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Abstract—The recent boost in undersea operations has led
to the development of high-resolution sonar systems mounted
on autonomous vehicles, and aimed to scan the sea floor and
detect objects. An important part of sonar detection is the
image denoising, where the background is smoothed and noise
components are removed while preserving the object’s borders.
Sonar image denoising is a challenging task, mostly due to
the heavy intensity inhomogeneity of the background and the
heavy spatial varying background. In this paper, we propose
an algorithm for sonar image denoising that is based on the
adaptation of the nonlocal means-based filter. The noise in the
highlight and background regions is modeled by the exponential
distribution, while the noise in the shadow region is modeled by
the Gaussian distribution. We estimate the label of each pixel
through image segmentation to estimate the parameters of each
distribution. Then, the minimum entropy criteria is used to decide
which statistics model in the denoising filter gives the best results.
Results for synthetic sonar images and over real sonar images
demonstrate that the proposed method successfully removes the
noise components while preserving the object’s edges.

Index Terms—Image enhancement, Speckle filter, NL Means-
based denoising, Sonar signal processing.

I. INTRODUCTION

H IGH-resolution imagery of the seabed is mostly provided
by sonar systems such as sidescan sonar and synthetic

aperture sonar (SAS). The resulting sonar images are fed into
the automatic detection and classification (ADAC) process
for detecting underwater objects [1]. The process is com-
monly applied on board an autonomous underwater vehicle
for realtime survey of a designated area. ADAC is used for
marine applications including seabed archeology [2], pipeline
monitoring [3] and offshore oil prospecting [4]. The key for a
successful object detection and classification through ADAC
is the segmentation process in which the image is clustered
into background, object’s highlight, and object’s shadow. Only
then, the object’s features are identified and the object is
classified. In this work, we focus on the de-noising part of
segmentation.

De-noising of a sonar image aims to remove noise com-
ponents without distorting the object’s borders. De-noising is
particularly challenging in sonar imaging since the seabed is
complex and comprises of many outliers. Wiener filtering and
wavelet transform [5] are two typical approaches for image de-
noising, but mostly apply for mitigating noise transients. The
non-local filter [6], performs de-noising by a weighted average
of all pixels intensity in the image. The per-pixel weight is
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determined according to the similarity between the pixel’s
local neighborhood and the local neighborhood of other pixels.
The 3-D filtering [7] performs a similar process but combines
the nonlocal filter with a Wiener filter. Wavelet transform can
reduce noise with good preservation of edges by thresholding
the wavelet coefficients [8]. Alternatively, Coupe et al. [9]
proposed the nonlocal means-based speckle filtering (NLMSF)
method that can preserve the borders of objects in ultrasound
images. The filter works well for unique objects, but seems
to fail when the background is densely occupied by a large
number of reflectors like sand ripples and boulders, which are
quite common in near-shore environments [10].

Our approach relies on modeling the intensity of the image’s
pixels. The model used for the pixel intensity includes an
additive noise component that originates from the sonar system
[11]. Alternatively, a speckle model was considered in [9],
where the pixel’s intensity is modeled by an additive noise
that is a multiplicative Gaussian noise with the true image.
Commonly, the Rayleigh distribution is used to model the
statistics of the noise component of the pixel’s intensity [12].
Another statistical model is the Weibull distribution [13].
However, while these distributions have been proven to reflect
well the statistics of noise for optical images as well as for
ultrasound images, they have not been well explored for de-
noising of sonar images.

The de-noising of sonar images is much different than that
for optical or ultrasound images. For one, the inhomogeneity
nature of the seabed provides a complex and highly spatial
varying image background where both the Rayleigh and the
Weibull assumptions may not hold. In fact, the current de-
noising schemes do not consider well the differences between
the highly diverse nature of the sonar background, the rela-
tively fixed pixel’s intensity of the object’s shadow, and the
mildly intensity variation in the highlight region. As a result,
the current literature is missing a distribution model that can
reflect well the statistics of the pixel’s noise in the shadow,
background and highlight regions in sonar images, and a de-
noising procedure that takes these difference into account.
Considering these remaining gaps, in this work we propose
a novel de-noising algorithm specifically designed for sonar
images.

II. PROPOSED DE-NOISING SOLUTION

Our de-noising approach aims to reduce the intensity inho-
mogeneity of the sonar image. This objective is of importance
for the task of object segmentation, where not only the detec-
tion of the object is of concern but also keeping its observed
shape is of importance for the classification procedure. The key
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Fig. 1. Flowchart of the proposed de-noising scheme.

idea of our de-noising scheme is to utilize different statistics
models for different regions in the sonar images, namely, the
shadow, the highlight and the background, and tie it in a single
Bayesian analysis. As we will show in the results section, this
approach leads to improved results in terms of the assessment
index, Q, [9].

The de-noising procedure is performed on non-overlapping
blocks of the original sonar image. We model the statistics
of the additive noise of each pixel according to the pixel’s
label. In particular, a shadow region is created due to the lack
of acoustic reverberation behind the object. Thus, the noise
is mostly electronically driven, and the noise is modeled by
a zero mean Gaussian distribution. Differently, the noise in
the background and the highlight regions is modeled by the
Exponential distribution [14].

The flowchart of our de-noising scheme is shown in Fig. 1.
We start by labeling the pixels using our LSM segmentation
initialization procedure in [15]. Then, the label of each block
is set by the majority labels of pixels in the block, and we use
a maximum likelihood estimator to evaluate the distribution
parameters within each block. The parameters estimation from
each block are fused together to obtain a final distribution
estimation per label. As we show in the results section, our
modeling of the noise distribution offers a better distinction
between pixels related to the background vs. pixels related
to the object, as opposed to other distribution models e.g.,
Gaussian or Weibull.

Our de-noising is based on the Bayesian formulation in
[9]. However, different than [9] where the pixel’s intensity
is assumed effected by a Gaussian distribution, we allow a
different distribution type for the noise in each block, which
is set based on a decision criteria that maps blocks into shadow
or background/highlight region. More specifically, for each
block we perform two de-noising attempts: one based on
the exponential distribution and one based on the Gaussian
distribution. We then select the best result in terms of minimal
block entropy. This is because the entropy characterizes the
spreading of the restored intensities, and thus very localized
regions (as required at the output of the de-noising filter)
lead to small entropies, while uniform regions lead to high
entropies. In other words, the criteria of minimal entropy
leads to a homogeneous intensity after de-noised, thereby
significantly relaxing the segmentation effort. To summarize,

the process steps are:
1) Estimate the parameters of the two possible distribution

functions.
2) De-noise each block assuming Gaussian distribution.
3) De-noise each block assuming exponential distribution.
4) Choose De-noising result that leads to minimum entropy.
5) Repeat (2)-(4) for all blocks in the image.

A. Systems Model and Main Assumptions

Let Y be a two-dimensional sonar image with dataset
{y1, ..., yN } ⊆ Y, where yi denotes the intensity of pixel i.
Each pixel i has one of three possible labels li ∈ {S,H, B},
where S and H are the shadow and the highlight of objects
found in the image, respectively, and B is the background. Our
aim is to accurately identify the image’s shadow and highlight
regions.

We model the noisy image as

yi = xi + ξi , (1)

where ξi is a conditionally independent additive noise with
a probability density function (PDF) pξ (ξ) and xi is the true
image pixel. Note that we model pξ (ξ) according to the pixel’s
label. Recall that a shadow region is created when the object
is blocking the acoustic reverberation. The signal related to
the shadow region consists of the electronic noise from the
receiver. Thus, in this region, the noise is modeled by a zero-
mean Gaussian distribution [11]. Following [14], the noise in
the background and the highlight regions is modeled by the
exponential distribution. Observing different sonar images, we
found that this choice of statistics offers a better distinction
between pixels related to the background vs. pixels related to
the object, as opposed to e.g., Gaussian distribution of different
parameters per class [16], or the Weibull distribution [13].
Moreover, the results also demonstrate that this distribution
model is sufficiently valid to provide accurate de-noising
results. We model the PDF of ξi by

pξ (ξ) =
{

pb(ξ) = λ · exp(−λξ), for B or H regions

ps(ξ) = 1√
2π(σ)2

· exp
(
− ξ2

(σ)2

)
, for S region

,

(2)
where λ is the exponential distribution parameter, and σ is the
standard deviation for the shadow regions. Since the noise ξ
is induced by the process of constructing the sonar image, we
assume that λ and σ from (2) are constant per image.

B. The De-noising Filter

The image de-noising process is performed to reduce the
intensity inhomogeneity of the sonar image. This objective is
of importance for the task of object identification, where not
only the detection of the object is of concern, but also keeping
its observed shape to ease the classification procedure. The key
idea in our de-noising scheme is to use the Bayesian approach
in [9] to tie different statistical models to the sonar images’
different regions, namely, shadow, highlight, and background.
As we will show in the Results section, this approach leads to
improved results in terms of assessment index (Q) [9], which
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reflects region homogeneity level. Moreover, we introduce a
novel method to self-evaluate the de-noising accuracy, thus
avoiding the need to initialize the de-noising process.

Our de-noising is based on the NLMSF in [9]. For the
sake of completeness, we briefly describe the main idea of the
NLMSF. The NLMSF is a despeckling method that utilizes a
dedicated speckle model to handle the spatial speckle patterns
in the image. The speckle model is given by:

yi = xi + xγi ξi , (3)

where ξi v N(0, σ2) is a zero mean Gaussian noise, and
γ is the speckle model parameter. The blockwise Bayesian
estimator x̂(Bi) is defined as [17]

x̂(Bi) =
∑ |4i |

k=1 y(Bk)p(y(Bi)|y(Bk))∑ |4i |
k=1 p(y(Bi)|y(Bk))

. (4)

where Bi is a square block of size T equals (2α+ 1)2 (α ∈ N)
centered at pixel i, 4i is a square search block centered at pixel
i of size |4i | = (2M + 1)2 (M ∈ N), y(Bi) is a T × 1 vector
that contains all observed intensities of the pixels inside block
Bi , and x(Bi) is a T × 1 vector of the unobserved (unknown
true image) intensities of the pixels inside block Bi . By (3),
the statistical distribution of yi |xi is

p(yi |xi) ∝ N(xi, x2γ
i σ2) . (5)

Assuming independence among the pixels, the likelihood of
y(Bi)|y(Bk) can be factorized as:

p(y(Bi)|y(Bk)) ∝ exp
(
−

T∑
t=1

(y(t)i − y
(t)
k
)2

2(y(t)
k
)2γσ2

)
, (6)

where y
(t)
i and y

(t)
k

are the tth component in y(Bi) and y(Bk),
respectively. The restored intensity of pixel i is given by the
mean of all restored values in the blocks Bi in which yi is
included. To improve the results and speed up the algorithm,
a pixel selection scheme is used [18], which is controlled by
the thresholding parameter µ1.

The free parameters γ and µ1 affect the robustness of our
de-noising scheme to seabed intensity inhomogeneity. This is
because of the need to tune these parameters for different
background types. Considering this challenge, we add to our
scheme the capability to include the additional distribution
types in (2), and to self-evaluate the distribution parameters.
This is described in the following subsection.

1) Estimation of Distribution Parameters: We make the
practical assumption that the sonar image is intensity in-
homogeneous. Under such conditions, we expect xi from
(1), i.e., the noise-free image components, to be different at
various locations of the image. To compensate for the location-
dependent xi , we divide the image into non-overlapped blocks
Yr of size κs , and perform parameter estimation per block.
Then, modeling the distribution of the noise components to
be the same for the whole image, we fuse the estimation
from all blocks into a single one. We note the choice of
κs tradeoffs. Small values of κs may enlarge the estimation
error of the distributions parameters, while large values of
κs degrade the performance of the despeckling filter in the

shadow zone because large blocks contain not only shadow
pixels, but also background information. We leave the choice
of κs to the user based on the size of the object of interest.

As model (2) reveals, the parameter estimation process must
include labeling information. That is, each block must be pre-
clustered into one of the possible labels {S, B,H}. Let cr be the
label of the rth block. We determine cr based on the majority
of the pixels’ labels in the rth block. We evaluate these pixels’
labels based on our suggested initialization algorithm from
[15]. While our initialization performed well for real sonar
images, because it is a model-free algorithm, it may induce
some clustering errors. Still, we found that the impact of such
errors on the parameter estimation is low. This is because,
as we formalize below, both λ and σ from (2) are assumed
constant throughout the image’s blocks and the final estimation
of the distribution parameters is a weighted sum estimation
from all relevant blocks.1

Once cr is determined, we statistically evaluate the parame-
ters in (1). For blocks with cr =

{
B,H

}
, we evaluate parameter

λ in the rth block by

λ̂r =
( 1
κs

∑
i∈Yr
(yi − y)2

)−0.5
, (7)

where

y =
1
κs

∑
i∈Yr

yi . (8)

Similarly, for block r with cr =
{
S
}
, we set

σ̂r =

√
1
κs

∑
i∈Yr

y2
i . (9)

Then, in accordance with our assumption that the noise term
parameters in (1) are constant throughout the sonar image,
we follow the metric in [19], which we find to be the most
suitable for dealing with outliers in sonar images, and fuse all
per-block estimations as a weighted sum:

λ̂ =
∑
r

%r λ̂r , (10)

with

%r =
exp(−|λ̂r − λ |)∑
r

exp(−|λ̂r − λ |)
, (11)

and

λ =
1
ρb

∑
r

λ̂r , (12)

where ρb is the number of blocks labeled as highlight or
background. The fusion of parameter σ is performed in the
same fashion.

1Note that the usage of initialization in the process of de-noising is used
only for parameter estimation and not for the block-based de-noising.
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2) Setting the De-noising Filter: The process of de-noising
is carried out separately for each block Yr . Since the blocks’
size of the sonar image, T and |4i | are much smaller than the
original image size, for the purpose of block de-noising, we
assume that the labels of the pixels in Yr are identical. Based
on the model in (1), the enumerator of (4) can be rewritten as

p(y(Bi)|y(Bj)) =
T∏
t=1

pξ
(
y
(t)
i − y

(t)
j

)
. (13)

Based on the distribution model in (2), to calculate (13), we
require information about the label of each block. The process
of de-noising does not tolerate an erroneous identification of
the block’s label. Therefore, usage of a wrong distribution
model in (2) will likely lead to image distortion. Thus, unlike
parameter estimation, in regard to block de-noising, we avoid
using segmentation initialization. Instead, for each block, we
find the distribution that leads to the best de-noising result.

3) Self-evaluation of De-noising Performance: We mea-
sure successful de-noising using the concept of minimum
entropy. This is because the block’s entropy characterizes the
distribution of the restored intensities. In particular, a very
localized region will lead to small entropy, while a uniform
region will lead to high entropy. Thus, setting the minimum
entropy as a quality measure will lead to the choice of the
best localized values, which is the choice with the most
homogeneous intensity of the de-noised block. The entropy
is calculated by

Hx = −
∑
i

p(i)log2p(i) , (14)

where p(i) is the number of pixels (after normalization) in the
rth de-noised resulting block at the ith intensity bin.

With the uncertainty of the block’s label, each block is de-
noised using (13) for both pb(ξ) and ps(ξ) to create the de-
noised images x̂b and x̂s , respectively. Then, the entropy is
calculated for each of the resulting images, and the chosen
de-noising result is the one of minimum entropy.

III. PERFORMANCE RESULTS

We compare the results of our de-noising algorithm with
those of NLMSF in [9] and Co-occurrence filter (CoF) in
[20]. The NLMSF is a de-noising algorithm designed for
sonar images, while CoF is a common de-noising technique in
optical images. We consider two sonar images. The first image
is a 201×201 synthetic sonar image composed of a cylindrical
object with sea-grass as background (Fig. 2). The second is a
151×301 image taken from a CM2 tow-fish sonar and includes
crabs traps (Fig. 3). For both figures, image (a) shows the
original image, image (b) shows our de-noised solution, image
(c) shows the benchmark de-noising using NLMSF, image (d)
shows the benchmark de-noising using CoF, and image (e)
is the decision map that is based on the minimal entropy
criteria. We observe that our proposed de-noising performs
better than the NLMSF filter, i.e., the background is more
homogeneous. Moreover, from the decision map, we observe
a clear identification of the shadow and highlight/background
regions.

(a) (b)

(c) (d)

(e)

Fig. 2. De-noising of a cylindrical object. (a) Input sonar image; (b) Proposed
approach; (c) NLMSF, (d) CoF, (e) Decision map: blue – shadow, yellow –
highlight or background.

To quantitatively evaluate the performances of our proposed
denoising method, we use the despeckling assessment index
Q. Despeckling assessment index Q is defined as [9]

Q =

∑
j,k
(µj − µk)2∑

j
σ2
j

, (15)

where µj and σj are the mean and the variance of the pixels’
intensities with assigned jth label after de-noising. To calculate
the despeckling assessment index, we use the ground truth map
for pixels’ label information. The higher the value of Q, the
better de-noising results are achieved.

Table I shows the values of Q for the cylindrical and the
Crab traps sonar images. The experimental results reveal that
both methods preserve the object’s boundaries. However, our
method is more efficient at smoothing the noise in the images,
and more suitable for sonar imaging.

IV. SUMMARY AND CONCLUSIONS

In this paper, we focused on the de-noising process of
sonar images. This process is required in applications requiring
detection and/or classification of objects, and its aim is to
smooth the image’s background without distorting the object.
We offered a new de-noising scheme, aimed particularly for
sonar images. The scheme uses different statistics for the
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(a) (b)

(c) (d)

(e)

Fig. 3. De-noising of a crab trap image. (a) Input sonar image; (b) Proposed
approach; (c) NLMSF, (d) CoF, (e) Decision map: blue – shadow, yellow –
highlight or background.

TABLE I
COMPARISON OF THE DESPECKLING ASSESSMENT INDEX Q FOR THE
CYLINDRICAL AND CRAB TRAPS SONAR IMAGES WITH α = 1, M = 3,

γ = 0.5 AND κs = 255.

Method cylindrical Crab traps

Proposed method 10.1 28.77
NLMSF 9.51 20.56
CoF 7.37 8.87

shadow and highlight/background regions that exist in sonar
imagery. Based on the concept of minimum entropy, we also
offered a quality measure to self-evaluate the de-noising result.
Synthetic and experiments results show that our de-noising
method successfully removes the noise components while
preserving the object’s edge. Future work will incorporate the
de-noising scheme within the process of image segmentation.
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