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This paper considers the problem of estimating the trajectory of an autonomous underwater1

vehicle (AUV) via a single passive receiver, without any anchor nodes or receiving arrays,2

and with the only help of a sequence of known acoustic signals emitted by the AUV. This3

scenario is of interest in case multilateration-based alternatives would require the deploy-4

ment of many receivers and imply exceedingly high costs, e.g., for the coverage of wide5

areas. The proposed method exploits the knowledge of environmental parameters such as6

the sound speed profile, bathymetry and bottom sediments in order to estimate the loca-7

tion of the AUV, taking advantage of the spatial dependency of channel impulse responses8

that arises from the diverse bathymetry around the receiver. This dependency is captured9

by comparing channel estimates against a database of channel responses, pre-computed10

through an acoustic propagation model. This yields multiple likely AUV locations, which11

are filtered via a path tracking method similar to the Viterbi algorithm, in order to estimate12

the trajectory of the AUV. Results obtained both from simulations and from a sea experi-13

ment show that the proposed method can estimate node locations and paths with a small14

error, especially considering the use of a single receiver.15

aA preliminary version of this work has been presented at the IEEE WPNC 2017 conference, Bremen, Germany1.
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I. INTRODUCTION16

Estimating the location of an autonomous underwater vehicle (AUV) is a required step for the17

operation of these devices for applications like ocean exploration, control of secure areas, and en-18

vironmental monitoring. In these applications, the AUV covers large areas, and its self-navigation19

system may drift significantly. Localizing the AUV via non-inertial systems may greatly help20

reduce such drift and improve the AUV’s location reckoning. Localization is typically achieved21

through a set of fixed receiving hydrophones spread across the AUV deployment area. Yet, due to22

the wide area covered by the AUV during its mission, its transmissions tend to be detected very23

sparsely over both space and time. This is especially the case if the AUV’s mission area is very24

large, and would imply the (expensive) deployment of a significant amount of equipment in order25

to cover the intended area with a sufficient density to enable reliable multilateration estimates.26

Instead, in order to balance a reasonable target detection probability with long term deployment27

constraints and costs, the coverage of large areas is typically achieved through sparse deployments.28

As a result, it is often the case that the signals used to detect a target are practically received only29

by a single receiver. Most existing algorithms to localize submerged devices require the presence30

of several anchor nodes2, or prescribe message exchanges between the device and the anchors3.31

Alternatively, range estimates from a single mobile anchor have been suggested assuming knowl-32

edge of the receiver’s movement between subsequent transmissions through, e.g., acceleration33

measurements4. Yet, this also requires interaction with the device to be localized.34

In this paper, we offer a solution for the challenge of localizing a non-collaborative single35

AUV. As opposed to localization methods that rely on a receiving array, our method assumes36

only the presence of a single stationary and passive receiving element, and the knowledge of the37
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transmitted signal (for example, the structure of the AUV pinger’s signals), but does not require38

knowledge of the pinger’s transmission times. Our approach is inspired by localization algorithms39

based on fingerprinting5: these algorithms evaluate the correlation between some significant and40

distinguishable channel characteristics (e.g., the power-delay profile, the number of distinguish-41

able arrivals, the angular spectrum of these arrivals, and so forth), and the same characteristics42

preliminarily measured at a number of locations, and collected together in a fingerprint database.43

Instead, our method hinges on the spatial diversity of the sea bottom bathymetry to match the44

measured channel impulse response (CIR) with a set of CIRs generated through an acoustic prop-45

agation model. To that end, we target those environments where the bathymetry and the sound46

speed profile (SSP) in the water column induce different channel impulse responses for different47

emitter-receiver location pairs. This is often the case for shallow-water environments with a di-48

verse non-flat bathymetry, but also for deeper waters where sea bottom hills, mountains, or steep49

slopes may exist.50

We base our method on the modeling of expected acoustic CIRs for different possible locations51

of an acoustic source around the moored receiver. After measuring the CIR for each received52

signal, we correlate it with the pre-computed modeled CIRs in order to estimate the distance,53

depth and bearing of the transmitter. This makes it possible to point the location of the sound-54

emitting AUV to the position for which the modeled CIR best fits the measured CIR. We repeat55

the process as the AUV moves and keeps emitting signals. The result is a sequence of location56

estimates whose size equals the number of detected sound emissions. These location estimates57

are expected to be noisy, since there may be several modeled CIRs that are significantly correlated58

with each measured CIR. To filter this noise, we create a trellis of possible locations, which are59
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chosen from the output of the cross-correlation between the modeled and measured CIRs, and60

which satisfy a given maximum AUV speed. The final path of the AUV is obtained via an efficient61

trellis search process similar to the Viterbi algorithm.62

Our contribution is twofold:63

• A localization approach for an AUV using a single receiving element;64

• An efficient method to reduce the state space resulting from the cross-correlation of modeled65

and measured CIRs, and thereby significantly decrease the complexity of the AUV path66

estimation process.67

We evaluate our method through both simulations (based on real bathymetry and sound speed68

information) and a proof-of-concept sea trial. Our results show that the proposed approach can69

estimate the AUV path with an acceptable localization error.70

The remainder of this paper is organized as follows: Section II provides an account of related71

work; Section III details the localization algorithm; Section IV presents simulation results; Sec-72

tion V describes our proof-of-concept sea trial; Section VI concludes the paper.73

II. RELATED WORK74

A. Techniques for Underwater Acoustic Localization75

A comprehensive survey of underwater acoustic localization is presented in6,7, and involves76

techniques for range estimation, bearing estimation, or both. Typical approaches to localization77

include long baseline (LBL)7 (based on trilateration, and thus requiring the interaction between78

the device to be localized and the anchors), short baseline (SBL, usually operated from a single79

vessel) and ultra-short baseline (USBL) systems8, that estimate the location of the device via time80

4



of arrival (ToA) and angle of arrival (AoA) measurements. As the accuracy of the angle estimation81

process directly depends on the stability of the equipment and is sensitive to strong multipath,82

range-based approaches are more typically used.83

Typical underwater ranging schemes rely on ToA, time difference of arrival (TDoA), or re-84

ceived signal strength (RSS), which is translated into distance via an acoustic propagation model9.85

ToA measurements can be obtained by separately analyzing the reflection patterns of transmitted86

signals10, which can be estimated via matched filtering or by using phase-only correlation and87

the kurtosis metric to mitigate channel-enhanced noise11. Still, ToA measurements tend to be88

noisy due to multipath: mistaking a non-specular multipath component for the direct path is often89

regarded as measurement noise12, and can be mitigated by transmitting signals having a narrow90

auto-correlation13,14, or by averaging ToA measurements over different signals15. Yet, instead of91

considering multipath as a distortion, the wealth of multipath arrivals can be exploited in passive92

systems in order to improve the localization accuracy, as well as to find the range of the acoustic93

source16 or to localize it with multiple receivers through a propagation model17.94

In the literature, the closest approaches to our proposed scheme target localization with less95

than three reference nodes, often by exploiting some form of knowledge about the environment.96

For example, the work in18 introduced a model-based range-bearing localization scheme that em-97

ploys two receiving hydrophones. The method identifies multipath arrivals at the hydrophones98

and tracks them using a particle filter. An ambiguity surface is then constructed based on the ex-99

pected multipath structure (derived via a ray model) and used to determine the most likely target100

location. To localize a source, the work in5 proposes to match received signals against a set of101

fingerprints measured by an array of receivers. The authors test the feasibility their approach in a102
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pool, which represents a static environment where fingerprints remain sufficiently stable over time.103

However, systematic fingerprint measurements in uncontrolled open sea environments would be104

more challenging, due to the rapidly changing nature of underwater acoustic channels.105

Matched-field processing, a family of array processing-based methods to estimate the param-106

eters of the ocean waveguide based on the full field structure of acoustic signals, can also be107

extended to underwater localization19. For example, the work in20 assumes the three-dimensional108

knowledge of the SSP and of the bathymetry over a 600×600 km2 area. The area is further divided109

in squares of side 5 km and normal mode theory is employed to predict sound propagation for a110

hypothetical source located in the center of each square. The sound field replicas thus obtained111

are matched to the acoustic field measurements collected through a 21-element vertical array, in112

order to infer the most likely location of the source. Matched-field localization has been recently113

achieved using compressed sensing (CS), which has the advantage of providing sparse solutions to114

inference problems using convex optimization21. Specifically, the proposed approach employs CS115

(implemented through the basis pursuit algorithm and the Lasso path) to find the best matching116

between field replicas and measurements, and shows that CS reliably handles coherent sources117

as well. Earlier, CS was considered to localize an underwater device by means of ultrawideband118

radio CIR fingerprinting22. Here, CS is implemented using the orthogonal matching pursuit and119

Lasso-II algorithms. Although the method achieves good localization accuracy, it remains suit-120

able only for very short ranges, due to the strong attenuation of RF waves in salted waters. An121

approach to estimate the range of a source with respect to a single receiver is presented in23. The122

authors assume that a moving source transmits signals with a period ∆t while moving around a123

hydrophone, and determine striation patterns in the function relating the signal observation time to124
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∆t. These these patterns are then employed to infer the velocity and range of the source, based on125

the assumption that the ranging operations take place in a shallow-water environment with waveg-126

uide invariant β = 1. When β is unknown, the Automatic Identification System (AIS) of nearby127

vessels can be opportunistically used to estimate it, by relating their received signal, intensity and128

frequency to their known position24.129

The presence of an array of transmitters is assumed in25, where the authors pre-compute the130

CIR from each transmitter to at all points of a grid that finely covers the water column along a131

given bearing. The location of a receiver is estimated by comparing the CIRs measured by the132

receiver against pre-computed CIRs. The system finally employs the determined location to tune133

transmit beamforming. In26, an AUV is located by fusing AUV heading and velocity information134

from some external sensor with acoustic phase information. The phase is measured from a batch135

of signals transmitted by a fixed projector of known location and received by a single hydrophone136

at the AUV.137

B. Differences with respect to Indoor Localization138

While fingerprinting is an established localization technique for terrestrial radio networks27,28,139

one of its key assumptions is that radio measurements are repeatable and slowly varying in space29,140

so that a device can actually afford to compute several statistics of a received radio signal and fuse141

them into a fingerprint vector30. Conversely, the underwater acoustic channel tends to be much142

more dynamic, with several arrivals coming from multiple reflection over the surface, bottom and143

volume scatterers. Moreover, the spatial coherence of the underwater channel is very limited, and a144

transmitter could experience very different channels when communicating to a static receiver from145
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different locations. Similar uses of ray tracing to aid indoor localization (e.g., see31) typically do146

not experience these issue, as they can rely on more stable radio channels. Filtering multiple147

sequential measurements through the Viterbi algorithm32 or other techniques (such as probabil-148

ity maps reproducing the expected movement of mobile devices33 or conditional random fields34)149

makes it possible to eliminate this uncertainty. However, the number of possible indoor positions150

to be matched by a terrestrial radio fingerprinting algorithm is usually very limited, yielding a151

state space of tractable size. On the contrary, in our underwater approach the location of the target152

could be anywhere around the location of the single receiver, yielding an order-of-107 state space153

size. This calls for methods to reduce the complexity of trellis exploration. We also remark that154

direction-of-arrival fingerprinting-based localization has been reconsidered in the field of millime-155

ter wave communications (e.g., see35,36), where however the devices can leverage large arrays to156

reliably decouple propagation paths in the received angular spectra. This is in contrast with our157

assumption of using a single receiving element, and remains very different from the rich CIRs158

usually measured in underwater communications.159

C. Summary160

The literature that most closely relates to our paper is summarized in Table I, where we report161

the requirements, description, and shortcomings of each approach. From this comparison, it be-162

comes clear that the most prominent contribution of our approach is the localization of a moving163

AUV in 3D using a single receiver (and assuming only a single transmitter at the AUV). While our164

approach has some aspects in common with matched field processing and fingerprinting, it remains165

unique in that it reduces the ambiguity of the matching between measured and pre-computed CIRs166
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TABLE I. Summary of the most relevant related work

Ref. Approach Requirements Details Shortcomings

18

(2015)
Multipath
tracking

• Two receivers

• Known
environmental
parameters

• Compare multipath vs. ray
model

• Particle filter extracts arrivals

• Ambiguity surface search

• Assumes isovelocity
profile

5

(2009)
Finger-
printing

• Fingerprint
database

• Broadband signal

• Database of modeled CIRs

• Pattern matching of CIR
measurements at different
frequencies

• Multiple receivers

• Maintenance of
fingerprint database in
ocean environments

20

(1990)

Matched
field
processing

• Hydrophone array

• Known
environmental
parameters

• Acoustic field replica
computation

• Gridded virtual source
positioning

• ML or Bartlett processing

• Requires multiple
receivers to decrease
ambiguity

22

(2014)

Radio UWB
finger-
printing

• UWB radio
modeling to
pre-compute field
dictionary

• Multiple antennas

• UWB fingerprinting

• CS solution via orthogonal
matching pursuit and
Lasso-II

• Multiple antennas

• Limited to short-range
localization

21

(2017)

Compressed
sensing for
matched
field
processing

• Hydrophone array

• Known
environmental
parameters

• Acoustic field replica
computation

• CS solution via basis pursuit
and Lasso

• Multiple receivers

23

(2012)
Range
estimation

• Single receiver

• Known waveguide
invariant

• Source velocity computation

• Identification of point closest
to receiver

• Range-only

25

(2018)
Finger-
printing

• Known
environmental
parameters

• CIR computation over a fine
2D vertical grid

• Matching with measurements
from multiple transmitters

• Multiple projectors

• Fixed-bearing
localization

26

(2014)

Acoustics-
aided
inertial
tracking

• External
bearing/speed
sensor

• Extract phase from train of
sine waves

• Solves inverse problem to
determine AUV location

• Requires accurate
bearing/speed
measurements
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FIG. 1. Block diagram of the AUV location and path estimation algorithm.

through a trellis search approach similar to the Viterbi algorithm, rather than resorting to fusing167

information from multiple transmitters or receivers. Moreover, we only process acoustic data, and168

do not require any external sensors to support the localization process.169

With respect to the preliminary work in1, the algorithm presented in this paper is much less170

sensitive to trellises that are not fully connected and to imperfect estimates of the initial AUV171

location; in addition, we include a performance verification through a sea experiment, and compare172

against benchmark approaches both in the simulations and in the sea experiment.173

III. ALGORITHM DESCRIPTION174

A. Key Idea175

We summarize the key idea behind our algorithm with the help of the flow chart in Fig. 1.176

We operate the AUV localization algorithm from a single receiver deployed at a known and well-177

explored stationary location. We assume that the sea bottom is diverse around the receiver (e.g.,178

see Fig. 2), leading to a spatially-dependent CIR, which we exploit in order to estimate the location179

of the AUV via a fingerprinting-based location system. Since such a system requires to measure a180

three-dimensional database of fingerprints (which is not feasible in underwater scenarios due to the181
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(a) Map of the San Diego bay area, showing a variable bathymetry, the location of the receiver

and of two transmitters, and the sea bottom profiles between each transmitter and the receiver.
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(c) CIR from transmitter 1 to the receiver.
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(d) CIR from transmitter 2 to the receiver.

FIG. 2. Illustration of our single-receiver localization method. When the environment is sufficiently diverse

(a), the CIRs differ significantly across different locations (c), (d). This can be leveraged for localization.

resource- and time-intensiveness of underwater acoustic measurements), we resort to a database of182

modeled CIRs instead. Such database is pre-computed via a numerical sound propagation model,183

such as the Bellhop ray tracing simulator (see Ch. 3 in37 and38).184

Whenever an acoustic signal is received from the AUV, we estimate the CIR of the correspond-185

ing acoustic channel and correlate it with our database. In order to reduce the complexity of this186
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step, we first correlate the CIR with specular and surface-reflected arrivals from the modeled CIRs:187

this excludes bearing-dependent bottom arrivals, and allows us to retrieve a set of possible values188

for the AUV’s depth and distance. We then compute one further round of cross-correlations, this189

time with the whole channel impulse response (thus including bottom reflections), for the selected190

depths and distances, and for every bearing value. The result is a number of possible AUV loca-191

tions. We repeat the process for several subsequent acoustic signals emitted from the AUV, which192

may correspond to the same location, or to different locations in case the AUV is moving. Finally,193

we apply an efficient, low-complexity tracking mechanism in order to filter all matching locations194

found, and to obtain a source trajectory estimate.195

Fig. 3 presents an example of the output of four subsequent location estimates. Each of panels196

(a) through (d) shows a map of the scenario. Our single receiver is shown as a centrally located197

square, whereas the AUV that moves along the trajectory represented as a black line. At each198

of the positions marked by two concentric circles, the AUV emits a signal that is employed by199

the receiver to compute location estimates as explained above. In panels (a)-(d), these location200

estimates are represented as grey crosses, where a darker grey shade indicates a higher confidence.201

The algorithm outputs multiple estimates for each AUV location, each with a different levels of202

confidence (higher confidence is represented using a darker grey shade in panels (a)–(d). Note that203

the the point of highest confidence may not be the closest to the actual AUV location.204

To rule out spurious estimates, we order the computed locations into a trellis (Fig. 3e), and run205

a forward-backward path search procedure similar to the Viterbi algorithm. In this case, the black206

path in Fig. 3e is selected, corresponding to the trajectory shown in Fig. 3f.207
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(a) Step 1 (b) Step 2 (c) Step 3

(d) Step 4

Step 1 Step 2 Step 3 Step 4

(e) Trellis (f) Trajectory estimate

FIG. 3. High-level illustration of the key idea behind our single-receiver localization process. Panels (a)–(d)

show a sound source moving along a straight trajectory. At four locations, the source emits a signal. The

receiver (located at the center of the area) measures the CIR and compares it against a database of modeled

channel responses. This translates into the location estimates indicated by the crosses, where a darker grey

shade indicates higher confidence. A trellis search algorithm (e) is then applied to find the most likely

source path (panel (f)).

B. Preliminary Assumptions and Setup208

The first step to localize the AUV is to detect is periodic pinger signals. We assume that no prior209

information is available about the location, the instantaneous speed, or the trajectory of the AUV,210
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and that the AUV does not collaborate to the localization process. Hence, a solution based on211

updating the parameters of a dynamic model for the AUV through filtering is not an option in our212

scenario. We only assume that the emitted signal’s waveform is either known, or can be reliably213

estimated, such that the channel impulse response can be evaluated. By this, we take into account214

received multipath, but ignore interference. Hence, our method is geared into the localization215

of a single source. We assume that an initial survey has been carried out in order to measure216

the bathymetry of the area surrounding the moored receiver with a fine resolution. The 1-meter217

resolution obtained by a 400-kHz multibeam sonar (see our experimental results in Section V) is218

more than sufficient in this respect. We further require periodic direct or indirect measurements of219

the local SSP.220

The area explored to localize the AUV is limited by the coverage of the bathymetry measure-221

ments, by the reception capabilities of the receiver, and by constraints on the emitter’s source level.222

This yields a bounded depth range between zsmin and zsmax. We further assume the AUV is moving223

at an absolute maximum speed of vsmax, known to the receiver. This leads to an expectation on224

the maximum distance traveled by the AUV between two subsequent emissions. We note that the225

knowledge of the AUV’s maximum speed is not strictly required, but the availability of this infor-226

mation improves the performance and greatly reduces the complexity of our method. At different227

locations, indexed by n = 1, . . . , NL, the source emits acoustic signals that are detected by the228

receiver along with each significant multipath arrival. The locations are expressed in terms of a229

cylindrical coordinate system as xs
n = (us

n, b
s
n, z

s
n) where, at location index n, us

n ∈ [0, umax] is the230

great-circle distance in meters between the receiver and the source, bsn ∈ [0◦, 360◦) is the bearing231

of the AUV with respect to the receiver (i.e., the angle at which the receiver sees the source, mea-232
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sured clockwise from due north) and zsn ∈ [zsmin, z
s
max]. We define the AUV’s path as the ordered233

source location sequence {xs
1, . . . ,x

s
NL

}.234

The database of modeled CIRs set up by the receiver is computed at all points of a cylin-235

drical grid designed to span the ranges U = {δu, 2δu, . . . , umax}, the bearing angles B =236

{δb, 2δb, . . . 360
◦}, and the depth values Z = {zsmin, z

s
min + δz, . . . , zsmax}. The set of grid points is237

then defined as G = U × B ×Z , where we denote guibizi ∈ G as the ith grid point, i = 1, . . . , |G|.238

This corresponds to the first box in Fig. 1.239

C. AUV Location Estimation240

For each grid point guibizi , the receiver models the expected CIR using a propagation model.241

For this purpose, we employ the Bellhop ray tracing software (see Ch. 3 in37 and38). Bellhop242

is an established solution to numerically solve pressure wave propagation equations by taking243

into account boundary conditions. In particular, Bellhop can factor in, among others: the SSP at244

multiple points throughout the water body section that joins the transmitter to the receiver; the245

relevant bathymetry in the area, including abrupt changes; the shape of surface waves; and the246

geo-acoustic properties of the sea bottom sediments. Bellhop has been used to model acoustic247

channels in different communication contexts, and served as the basis for more complex models248

(e.g., see39,40). In our context, Bellhop yields accurate time-of-arrival information for each acoustic249

path, and sufficiently accurate complex amplitude information, so that the outcome of correlation250

operations can be trusted. We will show that Bellhop offers sufficiently reliable CIR modeling in251

a sea trial in Section V.252
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The output of Bellhop includes a list of expected multipath arrivals, along with their amplitude,253

phase, delay, and reception angle. Moreover, for each arrival, Bellhop reports the list of bottom and254

surface reflections it incurred. This information is employed to construct two modeled responses,255

namely a partial CIR h
(1)
uizi(t), containing only the specular and surface-reflected arrivals,1 and the256

complete CIR h
(2)
uibizi

(t). As the specular and surface-reflected arrivals are practically independent257

of the bearing of the AUV relative to the receiver, and rather depend only on the SSP, on ui, and258

on zi, the subscript bi has been dropped in h
(1)
uizi(t).259

From the modeled CIRs, the receiver obtains two separate fingerprints, h
(1)
uizi and h

(2)
uibizi

. When260

the source is at location xn, its emitted signal is received as261

rn(t) = ĥunbnzn(t)⊗ s(t) + ν(t) , (1)

where ĥunbnzn(t) is the CIR estimated from a received signal, s(t) is the emitted signal waveform,

ν(t) is the ambient noise, and ⊗ denotes convolution. The receiver then computes

f (1)
uizi

= h(1)
uizi

(t)⊗ s(t) (2a)

f
(2)
ujbjzj

= h
(2)
ujbjzj

(t)⊗ s(t) , (2b)

and matches rn(t) against the fingerprints f
(1)
uizi and f

(2)
ujbjzj

corresponding to the grid points in G as262

follows.263

For each point (uizi) in the grid, we compute the normalized correlation264

C(1)
uizi

(n) =

∫ +∞

0

rn(t) f
(1)
uizi

(t− τ) dt

(∫ T

0

rn(t)
2dt

∫ +∞

0

f (1)
uizi

(t)2dt

)1/2
, (3)

where T is the signal’s duration, and τ is the time epoch corresponding to the correlation maxi-265

mum. Note that in (3) we perform a normalized correlation to reduce sensitivity to CIRs character-266
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ized by different power attenuation. Define M(1)(n) as the set of all pairs (uj, zj) corresponding267

to those C
(1)
uizi(n) that exceed a certain threshold ΘD, ∀ (ui, zi) ∈ G, where we set ΘD, using the268

analysis in42. We remark that we do not limit set M(1)(n) to contain just the coordinates of the269

single grid point yielding the maximum correlation. In fact, at this point, the estimation of the270

correct distance and depth may be hindered by the lack of, e.g., the specular arrival, which can271

occur in the presence of SSP patterns with a sufficiently steep gradient and for a sufficiently large272

distance between the AUV and the receiver (e.g., see the example on page 46 of Bellhop’s man-273

ual38). Including a number of possible matching locations is more robust against such errors. The274

above steps correspond to boxes 2 and 3 in Fig. 1.275

For each (uj, zj) ∈ M(1)(n), and ∀ b ∈ B, we compute the following normalized correlations:276

C
(2)
ujbj zj

(n, τ) =

∫ +∞

0

rn(t) f
(2)
ujbj zj

(t− τ) dt

(∫ T

0

rn(t)
2dt

∫ +∞

0

f
(2)
ujbj zj

(t)2dt

)1/2
. (4)

Call277

ρn
xj

= max
τ

C
(2)
ujbj zj

(n, τ) , (5)

and define M(2)(n) as the set of all triples pk = (uk, bk, zk) corresponding to the R(2) highest278

values of ρn
pk

∀ (uj, zj) ∈ M(2)(n) and ∀ b ∈ B, where R(2) is a user-defined parameter (in our279

performance evaluation, we set R(2) = 70). The above steps correspond to boxes 4 and 5 in Fig. 1.280

In ideal conditions, e.g., with an extremely dense grid G, in the absence of noise, and with281

perfect environmental information, it would be enough to limit set M(2)(n) to the coordinates282

of the point pk = (uk, bk, zk) for which ρn
pk

is highest. However, in any practical scenario, the283

grid point closest to the actual position of the AUV might not yield the highest correlation due284

to noise, outdated environmental information, or a combination of both. In this perspective, it is285
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convenient to set R(2) to some large value. On the other hand, it is computationally infeasible to286

have an exceedingly large set G. For this reason, we reduce the complexity of the search whenever287

possible by limiting the location search area through a bound on the distance between the AUV288

and the receiver. For example, if the source level is known, this bound can be obtained based on289

a received signal strength indicator (RSSI) as in43. Furthermore, in the following we present a290

filtering scheme that reduces the complexity of path estimation.291

D. AUV Path Estimation292

After determining the possible matching locations M(2)(n) for n = 1, . . . , NL, we proceed to293

find the most likely sequence of AUV’s locations among all possible options using a path estima-294

tion algorithm. Without prior information about the AUV motion pattern, we avoid assuming a295

dynamic model solved by filtering, but rather work on a trellis such as the one shown in Fig. 4.296

The trellis has NL stages, one for each transmission received from the AUV. In each stage, dif-297

ferent nodes represent different estimated locations, so that the first stage of the trellis represents298

all location estimates for the first detected signal from the AUV (set M(2)(1)), the second stage299

contains the estimates in set M(2)(2), and so forth until the last stage, which contains the esti-300

mates in M(2)(NL). We assign a confidence index to each node in the trellis (the value of the301

normalized cross-correlation between the modeled and measured channels, see (5)), and orga-302

nize them into a R(2) × NL matrix T (boxes 6 and 7 in Fig. 1). Both the nodes in the ith trellis303

stage and the entries in the ith column of T are sorted in order of decreasing confidence, i.e.,304

[T]1,i = ρi
p1

, [T]2,i = ρi
p2

, [T]R(2),i = ρi
p
R(2)

, and305

ρi
p1

> ρi
p2

> · · · > ρi
p
R(2)

. (6)
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FIG. 4. Example of trellis employed by the tracking algorithm for the source path estimation. Each node

represents a location estimate. Trellis links exist only among locations that are closer than the maximum

distance dmax covered by the AUV when traveling at full speed between subsequent signal transmissions.

1. Setting the Path Weights306

The objective of path estimation is to find the best sequence of nodes across consecutive trellis307

stages. To that end, a link exists between an entry in stage n and an entry in stage n + 1 if the308

locations represented by these nodes are closer than the maximum distance the AUV could cover309

when traveling at full speed vsmax between the nth and the (n+1)th signal detections (recall that the310

maximum absolute speed is assumed to be known). Formally, call eℓnℓn+1 the edge that connects311

the ℓnth node at stage n in the trellis (entry in column n of T) and the ℓn+1th entry at column312

n + 1. Call A(eℓnℓn+1) = pℓn and S(eℓnℓn+1) = pℓn+1 the ancestor and the successor of edge313

eℓnℓn+1 , respectively. Define the edge weight as314

σ(eℓnℓn+1) =





1 , if d
(
pℓn ,pℓn+1

)
≤ dmax

dmax

d
(
pℓn ,pℓn+1

) , if dmax < d
(
pℓn ,pℓn+1

)
≤ 1.5 dmax

0 , otherwise

(7)
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where d(x,y) = ‖x−y‖2 is the Euclidean distance between locations x and y, tn and tn+1 are the315

reception epochs of the nth and (n+1)th detected signals, respectively, and dmax = vsmax(tn+1−tn)316

is the maximum distance that the AUV could have traveled between time epochs tn and tn+1. Only317

edges with non-zero weights are considered for path estimation. To form a continuous path, we318

require connected edges. In particular, if for edge eℓnℓn+1 it occurs that its ancestor pℓn is not319

successor of any edge eℓn−1ℓn , or that its successor pℓn+1 is not ancestor of any edge eℓn+1,ℓn+2 ,320

then the weight of edge eℓnℓn+1 is set as zero, and the edge is removed from the trellis.321

We remark the similarities between the path estimation algorithm and the Viterbi algorithm for322

tracking within a trellis (see also44). While the Viterbi algorithm would yield the optimal solution,323

it would include all grid points in G in each stage of the trellis. This would require |G| entries in324

each column of T, which would compound to a huge state space and imply an exceedingly high325

computational complexity, especially if |G| is very large. In addition, solving through the Viterbi326

algorithm would require an estimation for the emission and transition probabilities, which involves327

some hard assumptions on the CIR and noise models. Instead, our version relies on confidence328

indices, and makes it possible to trim the state space according to physical movement constraints.329

This leads to a significant performance improvement and to a feasible path estimation complexity.330

2. Finding the Best Path331

Let E(n) = {eℓnℓn+1} be the set of edges that link a node in stage n of the trellis to a node in332

stage n+ 1, and use (7) to define the following metric for each edge333

λ(eℓnℓn+1) = ρn
pℓn

ρn+1
pℓn+1

σ(eℓnℓn+1) , (8)
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where the confidence indices are taken from T. Define a generic path on the trellis as334

Ψ = {e1, . . . , eNL
} , (9)

where ei is a shorthand for eℓiℓi+1
∈ E(i), and all edges are such that S(ei) = A(ei+1), i =335

1, . . . , NL − 1. Define the overall path metric as336

Λ(Ψ) =

NL−1∏

i=1

λ(ei)

NL−2∏

i=1

ρiS(ei)

, (10)

i.e., as the product of the confidence metrics for all edges that belong to the path, divided by the337

confidence of intermediate nodes in order to avoid accounting for them twice. The path estimate338

is finally found as339

Ψ̂ = argmax
Ψ

Λ(Ψ) , (11)

and we indicate the sequence of locations traversed by Ψ̂ as {x̂1, x̂2, . . . , x̂NL
}.340

As a means of measuring the discrepancy between the true and the estimated sequence of341

AUV’s locations, we consider the root mean square (RMS) point-wise distance between corre-342

sponding points of the true and estimated paths. Formally,343

εd
Ψ̂
=

(
1

NL

NL∑

n=1

d(x̂n,x
s
n)

2

)1/2

. (12)

We also convey the source bearing estimation effectiveness of our approach via the bearing error344

εa
Ψ̂
=

1

NL

NL∑

n=1

|b̂n − bsn| , (13)

where d(·, ·) denotes the distance between two points in the cylindric coordinate system.345
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3. Refinement346

In this section, we present two refinements to the above algorithm. The first refinement relates347

to the possible case that there exists no edge with a non-zero weight connecting two trellis stages348

n and n+1. This would lead to a partitioning of the trellis. We correct for these cases by allowing349

stage n− 1 to directly connect to stage n + 1. Specifically, the corresponding edge eℓn−1ℓn+1 will350

have a weight equal to351

λ(eℓn−1ℓn+1) = ρn−1
pℓn−1

ρn+1
pℓn+1

σ(eℓn−1ℓn+1) , (14)

where σ(·) is the same as in (7).352

The above recovery mechanism is further enhanced to handle cases of broader trellis partition-353

ing due to bursts of errors. These bursts are caused by strong noise from, e.g., a nearby vessel or354

waves, or due to erroneous bathymetry information at some locations. The result of such bursts355

are sets of short paths for which the maximization in (11) is not optimal, i.e., the problem becomes356

non-convex. Considering this case, we increase the number of paths in Ψ through our second357

refinement procedure as follows.358

We start by observing that, from the perspective of path finding, we can calculate paths by359

taking sets of estimated locations either in order they occur in time, or by reversing this order.360

In other words, the trellis stages in Fig. 4 and the corresponding columns in T can be flipped,361

such that the first contains location estimates in M(2)(NL), the second contains the estimates in362

M(2)(NL−1), and so forth until the last column, which contains the samples in M(2)(1). Call ΨF363

a forward path on the trellis traversing locations {x1,x2, . . . ,xNL
}, and call ΨB a backward path364

computed on the reversed trellis, traversing locations {yNL
,yNL−1, . . . ,yN1}. If Ψ̂F and Ψ̂B are365

the best forward and backward paths according to (11), respectively, we set the final path estimate366
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Ψ̂ = Ψ̂F if Λ(Ψ̂F ) > Λ(Ψ̂B), and Ψ̂ = Ψ̂B otherwise. In case of significant interruptions in the367

trellis structure, the above scheme increases the probability to find the correct path. The scheme368

is also beneficial if the estimate of the initial location on the forward path is incorrect, making the369

path search diverge to a mostly wrong sequence of locations. In case of a well connected trellis,370

instead, the scheme is likely to find the same path twice, with no effect on the accuracy of the371

algorithm.372

The complexity of the algorithm relates to the number of correlation operations and to the373

trellis search. For each received source signal, the algorithm computes κ|G| + O(|M(1)(n)|) ≈374

κ|G| correlations in order to extract the possible position estimates in set M(2)(n), where κ is a375

proportionality factor that account for the search space reduction enabled, e.g., by RSSI bounding376

considerations as mentioned in Section III C. For a signal of bandwidth–time duration product BT ,377

the complexity of each normalized cross correlation is O (B2). With O(NL|M
(2)(n)|) operations378

for the trellis search, the overall complexity is O
(
NL|M

(2)(n)|+ |G|B2
)
. Comparing this with379

the complexity of the Viterbi algorithm, i.e., O (NL|G|
2) (see also32), a significant complexity380

reduction exists.381

E. Discussion382

Our method considers the practical case of observing an unknown target. This target can move383

in any dynamic pattern and even irregularly. Hence, we avoid evaluating its position through384

filtering, and rather follow a trellis search approach over the confidence indices. This also means385

that the path found from all feasible solutions is the one with maximum overall confidence index,386

and thus isolated positions associated to a high confidence value will not be chosen. This is387
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appropriate, since we are looking for a systematic solution, rather then an individual match. Our388

solution for the trellis search takes a suboptimal approach by taking into account sets of only two389

nodes. This has the drawback that a single node in the trellis may have a higher impact than it390

should. Yet, without prior knowledge of the target and to keep the calculations feasible we avoid391

other solutions in the form of, e.g., dynamic programming. Further, we note that the accuracy of392

our method depends on the quality of the channel estimation process, which improves with the393

bandwidth of the emitted signal.394

For channel modeling, we use the bathymetry and the sound speed profile. Without up-to-date395

information about instantaneous sea conditions, we avoid a time-varying propagation model and396

use instead a static model. Instead, the time-variation of the channel is taken into account by the397

AUV’s motion, both by calculating different channels for different locations, and by using the398

maximum velocity vsmax. This parameter trades off complexity with performance, as higher values399

for the maximum speed corresponds to additional possible paths in the considered trellis. Another400

significant assumption is the ability to estimate the channel from the received signals. Clearly401

the performance of our approach depends on the accuracy of such estimation. While channel402

estimation is beyond the scope of this work, possible techniques for such an estimation can be403

rake receivers45, blind source separation46, or cyclo-stationary analysis47, to name a few options.404

IV. SIMULATION RESULTS405

A. Scenario and Parameters406

For our simulations, we consider a portion of the San Diego bay area, off the coast of US’s407

southern California, which is a well-explored area. We place the receiver at the coordinates408
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[32.9390◦N, 117.2816◦W ]. We take the area’s bathymetry data from the US Coastal Relief409

model48 (revealing that the average depth in the area is about 50 m), and employ an SSP sample410

taken at the observed area. The SSP has a downward-refractive shape, typical of shallow Cali-411

fornian waters during warm seasons, as depicted in Fig. 2b. We assume that the water surface is412

flat.413

In our simulations, we deploy both the receiver and the source at depths of 10 m. Still, we414

remark that the receiver is not aware of the source’s depth. The simulation starts by deploying415

the emitting source at random in the area at a range of 500 m from the receiver. The source then416

chooses a bearing uniformly at random and moves along the corresponding direction with constant417

speed chosen at random for the time required to carry out 10 transmissions. The locations xs
n418

and xs
n+1, where two subsequent emissions take place, are chosen uniformly at random such that419

d(xs
n,x

s
n+1) ≤ dmax, and we set dmax = 50 m.420

The fingerprint grid pre-computed by the receiver spans a total range umax = 1.5 km around421

the receiver, with a resolution of 1 m. The whole azimuthal plane is considered, with a resolution422

of 1◦, and the CIRs are computed for all depths between 5 m and 15 m, also with a resolution of423

1 m. This choice leads to a total of about 6 million points in set G, and emphasizes the need for424

our path finding algorithm, as it has much lower complexity than the regular Viterbi algorithm.425

The signal transmitted by the source, s(t), is chosen to be a linear chirp signal of duration426

100 ms and bandwidth of 10 kHz, centered at a carrier frequency of 12 kHz. Based on these427

signal parameters and using the analysis in42, for the computation of (3) and the formation of set428

M(1)(n), we choose ΘD = 0.1 ∀n. For each emission from a given source-receiver location pairs,429

the channel impulse response is computed through Bellhop38, using as parameters the SSP and the430
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FIG. 5. Example of correlation values for xs = [446m, 150◦, 10m] at an SNR of 30 dB, for different value

of the offset ∆z between the actual depth and the tested depth.

available bathymetry samples along the direction from the source to the receiver. The ambient431

noise at the receiver is modeled as an additive white Gaussian process, whose power is tuned so as432

to achieve a prescribed signal-to-noise ratio (SNR).433

B. Examples434

A sample result from (3) is shown in Fig. 5a. We observe a clear peak suggesting that the435

source is located at a distance of approximately 450 m from the receiver, at a depth of 10 m. This436

is due to the presence of all expected specular and surface-reflected arrivals in the received signal.437

If, e.g., the specular arrival were missing, the correlation peak at 450 m would not be as high. This438

is why we consider all three significant peaks, including those at about 300 m and 600 m, and for439

all depths where such peaks exceed ΘD.440
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FIG. 6. Accuracy of the path estimation algorithm in the presence of exact environmental data, for different

values of the SNR. Even for low values of the SNR the arrival structure in the CIRs does not change

considerably, and has no significant effects on performance.

To populate set M(2)(n), we set R(2) = 70. A sample computation of (4) for some range-depth441

pairs in M(1)(n) is shown in Fig. 5b. While in this particular case a peak stands out corresponding442

to the correct bearing of about 150◦, often such a favorable result does not occur. The chosen443

value of R(2) makes it possible to considerably increase the probability that the actual bearing is444

included in M(2)(n), while keeping the computational effort controlled.445

C. Localization Accuracy Under Varying SNR446

We start our performance evaluation by running our algorithm in the presence of exact envi-447

ronmental data under different SNR values. The complementary cumulative distribution functions448

(CCDFs) of the root mean square error (RMSE) affecting the distance and bearing estimates are449
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shown in Figs. 6a and 6b, respectively. Thanks to the perfect knowledge of both the bathymetry450

and the SSP in the observed area, neither result shows a significant dependence on the SNR, even451

after decreasing it to as low as 3 dB, which tends to make additional peaks appear in the correlation452

outputs. We observe that the average RMSE varies from about 120 m for an SNR of 30 dB, up to453

about 170 m for an SNR of 3 dB, with a median error around 80 m, which is satisfactory given the454

grid resolution employed and the use of a single receiving element. The bearing estimation results455

show even higher accuracy, with a mean estimation error εa < 20◦ even for an SNR of 3 dB, and456

a median error of less than 10◦.457

D. Localization Accuracy Under Imperfect Bathymetry Data458

The above simulation results show accurate localization for different SNR levels. However,459

the results are obtained assuming perfect bathymetry and sound speed profile knowledge. In our460

setting, the receiver is an anchored station, e.g., a marine observatory, and thus we argue that461

accurate sound speed measurements are possible and do often exist in such marine observatories462

(e.g., see49). Still, while fine-gridded bathymetry mapping can be made around the observatory,463

small errors and outdated measurements in the resulting depth map may exist. We now explore464

the sensitivity of our localization method to imperfect bathymetry information.465

In the following analysis, to each true bathymetry sample we add an offset drawn uniformly466

at random in the interval [−y, y], where y (in m) is a tunable parameter. We collect a Monte-467

Carlo set of 100 source paths and compute the CCDFs of the RMSE for both the distance and the468

bearing. The results are shown in Figs. 7a and 7b, respectively. We observe that, as expected,469

mismatched bathymetry data worsens the path estimation performance. However, for a limited470
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FIG. 7. Accuracy of the path estimation algorithm in the presence of imperfect bathymetry data. Erroneous

bathymetry significantly affects the algorithm’s performance. For limited errors (y = 1 m) the results are

still viable for several applications.

offset on bathymetry samples, up to y = 1 m, the median RMS distance error remains below471

200 m (or 6% of the total observed area), which is still a reasonably good result given the presence472

of a single receiving element. Instead, an error of up to y = 5 m yields comparatively worse473

performance. However, we remark that this is an extreme case, as such an error amounts to about474

10% of the average sea bottom depth in the area, and current sea bottom mapping systems typically475

ensure sub-meter bathymetry measurements for depths of less than 200 m (e.g., this is the case for476

Kongsberg Maritime’s 400 kHz EM 2040 multibeam sonar system we use in our sea experiment).477

Similar conclusions as for the distance-based sensitivity of the algorithm can be drawn also for478

the bearing estimation error. Fig. 7b shows that for y = 1 m, the increase in the median bearing479

estimation error is roughly 20◦, and increases to roughly 55◦ for y = 5 m. This result emphasizes480
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FIG. 8. Accuracy of the path estimation algorithm in the presence of imperfect SSP data. Increasing

deviations from the actual SSP tend to significantly change the multipath arrival structure. For limited

deviations, the median localization and angle error remain acceptable.

the need for accurate bathymetry information. Still, we argue that even such rough localization481

estimates can be instrumental for some applications. For example, security or environmental mon-482

itoring systems, where even a rough estimate can trigger a more accurate investigation by human483

personnel or more complex detection mechanisms; or fauna and habitat monitoring applications,484

where it is often sufficient to find the approximate path of a vocalizing animal.485
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E. Localization Accuracy Under Imperfect SSP Data486

In order to evaluate the impact of imperfect SSP data on the performance of our algorithm, we487

add an offset drawn uniformly at random in the interval [−c, c] to each true SSP sample, and carry488

out Monte-Carlo simulations for different value of c.489

The CCDFs of the distance and bearing RMSE are provided in in Figs. 8a and 8b, respectively.490

While the chosen values for c preserve the general downward-refractive properties of the SSP,491

even a small value tends to cause significant changes in the structure of multipath arrivals. For492

c = 0.25 m/s, we already observe a median distance error of about 250 m and a median bearing493

error of about 30◦. It could be argued that these values are still practical for rough localization494

applications, where the only need is to know whether the AUV is practically following a desired495

trajectory or is falling significantly off track. As expected, increasing c tends to reduce both the496

distance and the bearing estimation accuracy. This emphasizes the need to maintain SSP estimates497

updated at the receiver, and to recompute the CIRs in the grid G in the presence of significant498

changes.499

We finally remark that, besides bathymetry and SSP, high sea states may induce significant500

surface waves that would also contribute to modifying surface-reflected multipath components of501

the modeled and measured CIRs. Since it is not feasible to create different modeled CIR sets G502

for many realizations of the surface waves and for different sea states, in this case it would be503

appropriate to skip the correlation-based depth/distance estimation that results in sets M(1)(n).504

Instead, it would be possible to populate M(1)(n) with all pairs of depth and distance values that505
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FIG. 9. Comparison among different location estimation schemes: our algorithm, the preliminary version

of our approach in1, and the best point benchmark (corresponding to selecting the location that yields the

highest cross-correlation value).

satisfy RSSI bounds, and then proceed with the computation of the cross-correlations that lead to506

set M(2)(n).507

F. Comparison against benchmark localization schemes508

We conclude our evaluation with a comparison among our algorithm, its preliminary version509

in1, and a benchmark scheme that, for every location index n corresponding to a signal received by510

the buoy, chooses the most likely source location as the grid point in M(2)(n) yielding the largest511

correlation value (dubbed “best point” in the following). This is akin to a classical fingerprint-512

based localization approach, where the fingerprint is defined as the value of (4). Fig. 9 shows the513
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CCDFs of the distance and bearing RMSE for all above approaches carrying out all operations514

listed in Section III, including the forward-backward refinement of Section III D 3.515

The results confirm the expectation that our approach achieves a lower estimation error. This516

is also due to the forward-backward search refinement, which reduces the chance that a com-517

paratively low correlation value in the first point of the source’s trajectory hampers the correct518

estimation of the whole path. Specifically, the median distance RMSE decreases from about 100519

to about 50 m, in the presence of a comparable angle RMSE. Although the best point scheme520

provides a good estimation of the bearing in these simulations, its distance error is still very sig-521

nificant, with 80% of the errors being greater than 100 m. Moreover, while the tail of the error522

distribution for the best point scheme is better than for the algorithms in1 and in this paper, these523

tails already correspond to significant errors (e.g., > 300 m in terms of distance and > 45◦ in terms524

of bearing).525

V. EXPERIMENTAL RESULTS526

A. Experiment Setup527

In the previous section, we explored the performance of our localization scheme in simulations.528

Since these simulations rely heavily on a numerical acoustic propagation model, we now complete529

our analysis and show the performance achieved by our algorithm in a sea trial. The experiment530

was carried out in February 2017 in northern Israel (coordinates 33◦01’57.0”N 34◦55’41.2”E), in531

waters with a maximum depth of 140 m. The measured sound speed was 1529 m/s with a water532

temperature of 21◦ Celsius at the sea surface, and 1521 m/s with a water temperature of 17◦ Celsius533
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FIG. 10. Setup of the sea experiment carried out in Mediterranean Sea waters near Haifa, Israel, in

Feb. 2017.

at the sea bottom. The sound speed gradient between the surface and bottom was approximately534

constant. the current at the water surface was roughly 0.5 knot, the wave height was roughly 40 cm,535

and the sea bottom was sandy. A 5 m-resolution bathymetry was collected using a Kongsberg EM536

2040 400 kHz multibeam sonar. The bathymetry of the explored area is shown in Fig. 10a, and537

included a steep slope ranging from 60 m to 140 m. The top-left side of the figure shows artificial538

data as no measurements were collected in that region.539

The experiment included an 80-feet long vessel, RV EDEN, and a 13 feet rubber boat dragging540

a floating buoy from which an acoustic emitter was deployed, see Fig. 11. The rubber boat repre-541

sented the opportunistic sounds source, and the RV EDEN represented the single receiver. During542

the transmissions, the distance between the vessels was roughly 1200 m. The transmissions from543

the rubber boat included a sequence of 15 linear chirps at the frequency range of 7 kHz to 17 kHz,544
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FIG. 11. Picture of the buoy and ship from which the transmitter and receiver were deployed, respectively.

each of duration of 1 s. Transmissions were made with the EvoLogics S2C R 7/17W underwa-545

ter acoustic software defined modem at a source level of 170 dB re 1µPa @1m. Receptions at546

the RV EDEN were made through the custom uRadar recorder, whose receive sensitivity at the547

transmissions’ frequency range is about 190 dBV re 1µPa. Both the transmitter and the receiver548

were deployed at depth of 10 m. A time-frequency spectrogram of the received signals is shown549

in Fig. 10b. Besides the transmitted chirp signals, we observe the signals of the RV EDEN’s own550

echo-sounder. To mitigate the ambient noise as well as the signals of the echo-sounder, we filtered551

each chirp signal. Synchronization was performed using a normalized matched filter42.552
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FIG. 12. Sequence of location estimates for nine subsequent transmissions from a drifting source in the

sea experiment, showing the true location of the source (green cross), the estimate of our algorithm (red

triangles), the best point benchmark estimates (purple triangles), the Kalman filter results (grey squares),

and the limited-scope Viterbi estimates (blue triangles).
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B. Results553

We start from Figs. 12 and 14, which detail the results of the comparison between the modeled554

CIRs and the measured one for nine consecutive received signals. The results are shown as a polar555

map centered around the location of the RV EDEN, where each contour line represents a distance556

of 300 m from the vessel. In Fig. 12, each small grey cross represents a possible position for the557

source, i.e., a comparison output that passed the detection threshold ΘD (see Section III C) and558

was included in set M(2)(i), i = 1, . . . , 9. The thicker green cross marks the true location of559

the source. We observe that, for each of the nine received signals, many possible locations are560

obtained as a result of the cross-correlation operations carried out by our method. Fig. 13 shows561

one comparison between a CIR measured from a received signal and the CIR template constructed562

starting from Bellhop’s output (light blue) and corresponding to a location close to the true location563

of the source. We observe that although the channel model is imperfect, all significant peaks in the564

measured CIR are well represented, leading to a good overall matching. However, other locations565

also lead to a similarly strong matching, resulting in several location estimates being significantly566

far from the source, and collectively resembling a random cloud of possible source locations (the567

small grey crosses). The best point algorithm (purple triangle), that points to the location yielding568569

the maximum correlation for each signal, suffers from significant errors in three cases out of nine.570

These results support the simulation outcomes, showing that even when the bathymetry is fully571

known, relying only on the spatial diversity of the channel impulse response yields significant572

residual uncertainty. Processing the outcome of the best point algorithm through a Kalman filter573

does not yield significantly better results, even if the filter is fed with the actual velocity of the574

AUV (in contrast with our approach, that only requires to know the maximum AUV velocity,575
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FIG. 13. Comparison between a template CIR obtained from Bellhop (light blue) and the CIR measured

from a signal received during the sea experiment.

vsmax). The corresponding location estimates are shown in Fig. 13 as grey squares. Conversely,576

our algorithm (red triangles) exploits the trellis search to achieve a more precise estimation and577

removes outliers, resulting in a much smaller localization error.578

We also compare the above results against those of the Viterbi algorithm. Given the size of579

the state space, in order to be able to run the algorithm we artificially reduce the search scope to580

a 90◦ sector centered on the true bearing of the source, and to the distances ranging from 1000581

to 1400 m. While this gives a clear advantage to the Viterbi algorithm, it is a necessary step to582

allow the search space to fit in its data structures. The Viterbi results are shown as blue triangles583

in Fig. 12. We observe that the algorithm correctly predicts the fact that the source is static, but584

achieves a slightly worse location error despite the limitation of the search scope. This outcome585
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FIG. 14. Final drifting source path estimate in the sea experiment, showing the true location of the source

(green cross), the estimate of our algorithm (red triangles), the best point benchmark estimates (purple

triangles), the Kalman filter results (grey squares), and the limited-scope Viterbi estimates (blue triangles).

The total localization error for our algorithm is between 174 m (5.8%) and 330 m (11%), with a bearing

error between 2 and 12 degrees.

is due to systematic, non-Gaussian errors incurred when modeling real underwater propagation586

using an acoustic propagation model under imperfect information (e.g., in this case, the resolution587

of the bathymetry and SSP data).588

We summarize the path estimation results for the comparison outputs in Fig. 12 are shown 14589

with the same color coding as above. In this case, the green crosses represent the average location590

of the drifting RV EDEN throughout the experiment. The results show a nice match between the591
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estimated location and the true one for our algorithm and the Viterbi algorithm, and for only a592

subset of the location estimates of the best point algorithm. The Kalman filter results also show593

that this method is very sensitive to incorrect estimates of the initial location of the AUV.594

The estimated locations predicted by our approach also correctly follow the drifting direction595

of the source boat. The total localization error for our algorithm is between 174 m and 330 m,596

with a bearing error between 2 and 12 degrees. While these errors may seem large, we argue that597

for the task of localizing an AUV in a long term mission, this is still acceptable. This is because,598

first, after a few hours especially in deep water, the self-navigation system of the AUV completely599

drifts and thus any localization solution of limited expected error will benefit the operation50, and600

second, compared to the typical detection range of roughly 5 km for the AUV’s pinger (e.g.,51), the601

above reported localization error as in our experiment is still a good result. Given that this result602

was obtained using only one receiver in real sea conditions, it demonstrates well the applicability603

of our suggested localization method.604

VI. CONCLUSIONS AND FUTURE WORK605

In this paper, we presented a novel approach for the acoustic localization of a non-cooperating606

AUV emitting acoustic signals. Our approach relies on a single passive and stationary receiving607

element and on the modeling of acoustic propagation given knowledge of the bathymetry, sound608

speed profile and bottom sediments in the deployment area. The method is based on the compari-609

son of a channel impulse response evaluated from a received acoustic signal, against a database of610

channel impulse response fingerprints. As the latter are modeled instead of measured, we require611

no periodic channel fingerprint acquisition in the area around the receiver. To filter noise, locations612

40



that show a good match between the measured and the modeled channels are arranged into a trellis.613

A location path is then estimated while limiting transitions between the trellis nodes according to614

an assumed maximum velocity for the AUV. Our approach makes it possible to estimate the path615

traveled by the AUV with low complexity and with high accuracy. Such accuracy decreases (but616

still remains sufficient for a variety of applications) if the receiver holds outdated environmental617

data. A proof-of-concept sea experiment demonstrates the applicability of our method to real sea618

conditions with a localization error as low as 5.8%, which is a remarkably good accuracy given the619

use of a single stationary receiver and the realistic imperfect bathymetry and sound speed profile620

measurements.621

Future work will include a refinement considering a finer non-uniform grid in locations where622

the input data shows the largest variability, as well as extending the localization to multiple targets.623
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