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Unsupervised Local Spatial Mixture Segmentation of
Underwater Objects in Sonar Images

Avi Abu and Roee Diamant

Abstract—In this paper, we focus on the segmentation of sonar
images to achieve underwater object detection and classification.
Our goal is to achieve accurate segmentation of the object’s high-
light and shadow regions. We target a robust solution that can man-
age different seabed backgrounds. Segmentation of sonar images
is a challenging task. Speckle noise and intensity inhomogeneity
may cause false detections and complex seabed textures, such as
sand ripples and seagrass, often leading to false segmentation. In
this paper, we propose our local spatial mixture (LSM) method
for image segmentation of sidescan deployed sonar systems of any
type. This new method estimates pixel labels in sonar images by
incorporating the possible spatial correlation between neighboring
pixels for improved segmentation. LSM modifies the expectation–
maximization algorithm by adding an intermediate step (I-step)
between the expectation (E-step) and maximization (M-step) steps.
To combat intensity inhomogeneity, we employ a new initialization
algorithm, one whose thresholds are set automatically to achieve
and maintain robustness in various underwater environments.
Using multiple evaluation indexes that measure the geometrical
features of the segmented objects, we tested LSM using synthetic
and real sonar images, one of which is obtained from our own sea
experiment. Our results show that LSM achieves improved seg-
mentation performance over the state-of-the-art methods of four
different approaches; LSM is also robust to different seabed tex-
tures and intensity inhomogeneity. We share the sonar images from
our sea experiments.

Index Terms—Expectation maximization (EM), gamma distri-
bution, object detection, sand ripples, sonar image segmentation,
speckle noise.

I. INTRODUCTION

SONAR images have been widely used in the fields of marine
geology, marine biology, and marine archeology [1]. Sonar

systems, such as the synthetic aperture sonar (SAS), multibeam
sonar, and sidescan sonar, can produce high-resolution images
of the seafloor, even in murky water. The importance of object
detection and classification using remote sensing images can
be found in a wide range of applications, such as natural geo-
logical hazards, environmental monitoring, and urban planning.
An effective land-use classification method, based on a library
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of pretrained object detectors, is proposed in [2]. In this paper,
we offer local spatial mixture (LSM): a method that produces
accurate segmentation of the object’s borders and of the image’s
background. LSM is aimed specifically for images produced by
a side-mounted sonar system, such as sidescan sonar, mutibeam,
and SAS. Image segmentation is the second step of the process
of automatic detection and classification (ADAC) and its quality
determines to a great extent the performance of the classifier.
In this respect, LSM is a blind segmentation method that does
not require a priori knowledge of the shape or size of the ob-
ject. LSM is also robust to the types of both sonar system and
seabed.

Sonar image segmentation is an important step in the ADAC
chain. A typical ADAC scheme is presented in Fig. 1. The ADAC
process works as follows: first, an ROI is detected from the orig-
inal image. Then, segmentation is performed for the ROI. The
segmentation results are used to extract the geometrical features
of the detected objects. In the final step, a classification is per-
formed based on the extracted features. In this paper, we focus
on the segmentation part of the ADAC process for sonar images.
We perceive segmentation as the key to effective ADAC perfor-
mance. Three types of regions are identified in sonar images:
highlight, shadow, and background [3]. The highlight originates
from reflections of the acoustic wave from the object; shadow
regions are created due to the lack of acoustic reverberation be-
hind the object; and background originates from seafloor rever-
beration. An example of all three regions combined in a single
sonar image is presented in Fig. 2. The background regions are
identified by rectangles, and the highlight and shadow regions
are identified by red lines. Our goal is to accurately identify
the pixels in the image that relate either to the highlight or to the
shadow regions of an object, and which are separated from the
background. That is, in contrast to pure segmentation, we only
care about the correct labeling of pixels in relation to the object.

Sonar image segmentation is mostly challenging due to strong
reflections from the seafloor and the inhomogeneity of the water
column. These phenomena can cause a false segmentation of the
image background as an object highlight/shadow. Another chal-
lenge is posed by complex seabed textures, such as sand ripples,
seagrass, and boulders. Boulders and seagrass may increase the
areas in the image with false segmentation. Furthermore, the
echoes of the object and sand ripples may blend together, caus-
ing a brutal distortion of the geometrical features of the object’s
shadow. These distortions are because traditional segmentation
techniques for (optical) natural images cannot be directly em-
ployed for sonar images.
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Fig. 1. Scheme of an ADAC system. Region of interest (ROI) is first detected. Segmentation is then extracted for each ROI. Based on the segmentation map,
geometrical features of the detected objects within the ROI are measured. Using these features, the classifier assigns a class to each object. The contributions of
this paper are focused on image segmentation.

Fig. 2. Complex seabed texture in a sidescan sonar image. Examples of
shadow and highlight regions are represented by red lines. Examples of back-
ground are represented by rectangles.

Supervised and unsupervised methods are the main ap-
proaches in sonar image segmentation. The former uses a
database of labeled examples of the target object, whereas no
prior training set is available for the latter. Given a reliably
labeled database, supervised segmentation will produce better
results than unsupervised segmentation. However, since sonar
images tend to vary significantly, according to the angle and
distance of the observed object, a reliable database is available
only for a very limited set of objects. This problem is often exac-
erbated, due to the existence of rocks and the varying structure
of the sea surface, which may produce false detections when us-
ing a limited database. In this paper, we focus on unsupervised
image segmentation. We assume that we know the parameters
of the sonar system (i.e., its carrier frequency and overlooking
angle) as well as the depth of the water. We also assume that we
have an upper bound for the size of the object and thus can calcu-
late the expected size of the object in the sonar image. Still, we
assume no training set for the object of interest. In other words,
the actual shape and structure of the target in the sonar image are
not known. Under this setting, we perform unsupervised sonar
image segmentation.

Our LSM segmentation algorithm is targeted to be compu-
tationally inexpensive and to show robustness to intensity in-
homogeneity. LSM first performs an initial segmentation of the
sonar image into three clusters: highlight, shadow, and back-
ground. Then, segmentation is performed using the expectation–
maximization (EM) algorithm [4]. To achieve robustness to

different backgrounds, we have solved the complex analysis
for a generalized mixture distribution model. The result is a vast
improvement in segmentation compared to the commonly used
Gaussian mixture model. To avoid local minima points during
the EM process, we issue a novel initialization procedure based
on the detection of local shadow and local highlight regions.

The main contributions of this paper are summarized as
follows.

1) A mixture model-based method to significantly improve
segmentation accuracy compared to four benchmarks that
represent the state-of-the-art methods: Dempster–Shafer’s
theory, Markov random field (MRF), graph cut, and fuzzy
logic.

2) A novel intermediate step that utilizes the expected spatial
dependence of the image’s pixels. The result is a new soft–
hard method, which evaluates the posterior.

3) A novel initialization procedure with an automatic selec-
tion of thresholds that handles the intensity inhomogeneity
of sonar images and ultimately reduces the risk of false
segmentation and local minima points.

4) A statistical analysis of the segmentation results and
analysis of real sonar images using novel quantitative
measures.

We investigate LSM performance in both numerical simula-
tions and using real sonar images. For the former, we imple-
mented a simulator to produce sonar images. For the latter, we
use the EdgeTech database, which includes multiple sonar im-
ages from different marine environments [5]. The results show
that, at a cost of a slight complexity increase, our algorithm ex-
ceeds the state-of-the-art methods of four different approaches
in terms of false segmentation, object shape measures, and ob-
ject geometrical features.

This paper is organized as follows. In Section II, we sur-
vey the state-of-the-art methods of image segmentation. In
Section III, the system model is presented. Section IV con-
tains the details of LSM, whereas numerical and experimental
results are presented in Section V. Finally, concluding remarks
are provided in Section VI. The notations used in this paper are
summarized in Table I.

II. RELATED WORK

We identify three main approaches for image segmenta-
tion. The first is the fuzzy-based segmentation, the second is
the mixture-model MRF, and the third is the active contour
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TABLE I
LIST OF MAJOR NOTATIONS

(AC) method. Regarding the former, fuzzy C-means (FCM) is
a widely used algorithm in image segmentation [6] and [7].
FCM performs segmentation via nonlinear optimization, which
is based on an objective function. The MRF approach usually
involves the estimation of the posterior probability to manage
the spatial dependencies between neighboring pixels, such that
outliers with respect to their neighborhood are excluded [8].
The AC model has been applied successfully to image segmen-
tation [9], and is considered to be robust to noise and to generate
smoothed and accurate contours. The segmentation problem can
also be solved using graph theory. For example, in graph cut im-
age segmentation, by minimizing the Gibbs energy function, a
label is assigned to each node in the graph’s representation of
the image [10]. While fuzzy-based and AC-based segmentation

work well for certain types of images, they require manual adap-
tation for a different seabed structure. To obtain robustness to
background types and to combat nonhomogeneity, we find mix-
ture model-based segmentation to be a better fit. Mixture-models
MRF-based segmentation is less sensitive to noise and outliers
in sonar image than FCM, AC, and graph cut. This is mainly
since MRF utilizes the local spatial interactions between neigh-
boring pixels; as a result, the label of the pixel is less influenced
by outliers. On the contrary, in FCM, the spatial correlation be-
tween neighboring pixels is not taken into account; in AC, the
gradient method leads to low segmentation accuracy; and graph
cut based segmentation is very sensitive to initialization. To han-
dle the nonhomogeneity in sonar images and to avoid trapping
to local minima, a manual adaptation of crucial parameters is
needed in fuzzy-based segmentation, whereas in AC, manual
initialization is required [11]. Also, the approach of parametric
shape templates [12] in AC is severely degraded in sonar data,
and should be adapted manually to generate satisfactory results.
In contrast, employing a mixture model of distributions, such as
the gamma distribution, allows flexibility in segmenting sonar
data. This is because, by setting its parameters appropriately, the
representation through gamma distribution captures a verity of
distributions [13]. The flexibility of MRF-based segmentation,
such as the MRF in [8], in handling noise in different regions in
the sonar image is reflected by the prior distribution that varies
for each pixel corresponding to each label and is set according
to the local spatial information.

Due to its importance and numerous applications, the problem
of sonar image segmentation has been widely studied. Recently,
the AC method has been applied successfully for image seg-
mentation [14] and [15]. Two main approaches exist for AC
methods: edge based and region based. Edge-based methods
utilize image gradients to identify the object’s boundaries [16]
and [17]. In sonar image segmentation, these are related to the
boundaries of the highlight and shadows that characterize an
object. The region-based method models the background and
object regions statistically and finds an optimum, where the
model best fits the image [18]. Another interesting approach in-
volves the integration of the image’s geometric properties. This
is performed in the gradient vector flow (GVF) algorithm, which
extends the gradient vector of an edge map, thereby suppress-
ing noise. Wang et al. [19] proposed normally biased GVF to
combat weak edge preserving and to achieve noise robustness.

The main limitation of the above-mentioned algorithms is
their sensitivity to the initialization step. In particular, if the AC
is initialized without comprising a part of the object, the algo-
rithm will diverge. Recently, Fandos and Zoubir [20] proposed a
new polygonal AC algorithm for sonar imagery that utilizes the
likelihood function of the object region and background region.
The initial contour is drawn from the results of the Markovian
segmentation. Li et al. [21] proposed the region scalable fitting
(RSF) model that utilizes local information in the cost function
to deal with intensity inhomogeneity. This local information is
based on a weighted average of pixel intensities in a Gaussian
window in the object region and background region. However,
since the cost function of the RSF model is nonconvex, the final
segmentation results are very sensitive to the initial selection of
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the segments. Javed et al. [22] proposed a method that improves
RSF in terms of accuracy and efficiency. The model is built on
local entropy and local variance as inputs to fuzzy inference
engine to extract proper weights to be used in the cost function.
Yang et al. [15] proposed a nonlocal means-based despeckling
filter as a pretreatment to improve robustness to multiplicative
noise for sidescan sonar images. The authors also integrated
an edge-driven constraint into the RSF model to avoid conver-
gence to local minima and to reduce complexity. Jing et al. [23]
proposed a novel global minimization AC model (GMACM),
which is a convex version of the RSF. GMACM has been applied
for oil slick segmentation in synthetic aperture radar (SAR) im-
ages with satisfactory results. However, GMACM only utilizes
the local mean information, which is not sufficient to accu-
rately model an image with intensity inhomogeneity; hence, its
performance is limited. Recently, Song et al. [24] proposed a
globally statistical AC model (GSACM) that takes into account
not only the local average, but also the local variance of the
image’s intensities. GSACM is more robust to the initial selec-
tion of object and background boundaries since the algorithm
solves an unconstrained convex cost function, in contrast to the
GMACM, which omits the constrained term when minimizing
the cost function.

In [11], Fandos et al. apply a high complexity graph the-
ory based method aimed for a synthetic aperture sonar image.
The method splits the image into two groups of pixels, one as-
signed to the shadow region and the other to the background.
The iterative conditional modes (ICM) method is used for the
segmentation of the highlight region. Celik and Tjahjadi [25]
propose an unsupervised multiscale segmentation method for
seabed mapping using sonar imagery. A multiresolution rep-
resentation of the image is obtained by applying the wavelet
transform. A feature set is then computed for each pixel and K-
means clustering is used. For initialization, the particle swarm
optimization method is used in [26], whereas in [27], initializa-
tion is based on the fractal segmentation. Maximum likelihood
(ML) was used to estimate the distribution parameters of the
Markov model, and the iterative conditional estimation algo-
rithm serves for final segmentation.

Finite mixture models have also been widely used in image
segmentation to incorporate spatial correlation between pixels
[28] and [29]. Zhang et al. [30] substituted the prior probability
of the pixel label with an estimate of the MRF distribution. The
diffused EM (DEM) algorithm [31] uses an anisotropic diffusion
step between the E-step and the M-step of the EM algorithm. Re-
cently, the MRF and Dempster–Shafer theory (DST) have been
utilized to handle spatial correlation among neighboring pixels
[32] in sonar images. In DST-based clustering, pixel labels are
used as evidence. Then, according to Dempster’s rule, all pos-
sible combinations of hypotheses are considered for decision-
making for pixel i . The work by Nguyen and Wu [8], which
represents the state-of-the-art method in MRFs-based segmen-
tation, incorporated the spatial correlation among neighboring
pixels by using a novel smoothing prior. This new model was ap-
plied in the MRF distribution to form the log-likelihood function
initialized via the K-means algorithm. Yet, a limitation of this
method is that a single parameter controls the smoothing prior,

which may limit the tolerance to noise. Wu and Chung [33] pro-
posed a compound MRF model to represent the boundary of an
object. Analyses conducted on simulated images, as well as on
real clinical images, reveal an improvement in segmentation and
accurate object boundary results. Pan et al. [34] proposed a new
mixture model, based on the Student’s t-distribution [35] and
the MRF. The main advantage of the Student’s t-distribution is
that it is heavily tailed, and hence provides a much more robust
approach than the standard Gaussian mixture model (GMM). In
[36], at a high computational cost, Nikou et al. used local spa-
tial interactions between neighboring pixels. The probability of
pixel labels is modeled using the Dirichlet compound multino-
mial density function. To impose smoothness, the Gauss MRF
is utilized on the Dirichlet parameters.

While the above surveyed sonar segmentation methods per-
form well in simple underwater environments, they fail to seg-
ment the image in complex seabed textures, such as sand rip-
ples or seagrass. This is mostly due to the problem of intensity
inhomogeneity, but also due to nonaccurate segmentation ini-
tialization. Considering this challenge, we offer a novel robust
initialization algorithm and a new model for incorporating the
spatial information among neighboring pixels.

III. SYSTEM MODEL

This paper focuses on the segmentation of sonar images pro-
duced from sonar systems mounted on autonomous underwater
vehicles (AUV). The goal of image segmentation is to accu-
rately estimate the pixel labels. Let A be a two-dimensional
(2-D) sonar image of size N with Ai , i = 1, 2, ..., N , being the
intensity level of the i th pixel. Let L be a set of labels for the
image pixels with |L| = L , where | · | stands for the dimension
of a group. We consider three labels L = {S,B,H}, where S,
B, and H stand for shadow, background, and highlight, respec-
tively. The result of the segmentation process is an assignment
li ∈ L for each pixel i . Let el denote an L × 1 vector whose
lth component is one and the rest are zero. Also, let Ii be an
indicator vector with Ii = (Ii,1, ..., Ii,L )T ∈ {e1, ..., eL}. Ii is a
discrete random variable with a probability function defined by
Prob(Ii = el ) = πi,l ∀ i, l whose distribution is given as

f (Ii ) =
L∏

l=1

π
Ii,l

i,l . (1)

We use the gamma distribution with parameters αl and μl suit-
able for sonar images [37] such that

f (Ai |Ii,l = 1, θl ) =
(
αl
μl

)αl

(Ai )αl−1 exp
(
−αl Ai

μl

)

�(αl)

≡ φ(Ai |θl) (2)

where θl = [αl, μl ]T and �(·) is the gamma function, and we
have

f (Ai |Ii , θl ) =
L∏

l=1

φ(Ai |θl)
Ii,l . (3)
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Fig. 3. Schematic diagrams of the windows template for background, shadow and highlight calculation, and the integral image. (a) Upper and lower red windows
contribute to the calculation of the background Bi

s , and the yellow window contribute to the calculation of the shadow map S i and the highlight map Hi . (b)

Illustration of the integral image. The blue window refers to the original image, and the sum of all pixels in the gray window is A
(

ui , vi
)

.

The set of parameters is defined by� ≡ (π1, ..., πN , θ1, ..., θL ),
where πi = (πi,1, ..., πi,L ), i = 1, . . . , N . Using (1) and (3), we
get the likelihood as follows [4]:

f (Ai , Ii |θl) =
L∏

l=1

[πi,lφ(Ai |θl)]
Ii,l . (4)

Denote the complete data set by yT = (AT , IT
1 , ..., IT

N ), where A
is an N × 1 vector containing all pixel intensities. Then, assum-
ing the components of A are independent identically distributed,
as well as the components of {Ii }, the conditional distribution
of the complete data set is

f (y|�) =
N∏

i=1

L∏

l=1

[πi,lφ(Ai |θl)]
Ii,l . (5)

Note that, while traditionally the prior does not depend on spe-
cific pixels, in (5), the priorsπi,l are pixel dependent. We use this
formalization to allow incorporating intensity inhomogeneity of
sonar images. Also, the likelihood function in (5) does not in-
corporate local correlations between neighboring pixels. Hence,
applying the ML algorithm directly on (5) does not utilize all
available information.

IV. PROPOSED LSM METHOD

In this section, we present the details of our LSM segmen-
tation method. LSM is composed of two main stages: the first
is the initialization stage and the second is the clustering stage.
The clustering stage is based on a modification of the EM al-
gorithm and is initialized by the first stage as a good starting
point to avoid trapping to a local minimum. We start with the
initialization of the segmentation procedure and follow with a
full description of LSM.

A. Initialization Method

Due to the frequent speckle noise in sonar images, it is cru-
cial to produce good initial clusters to improve the conver-
gence rate as well as the final segmentation results. Referring
to the pseudocode in Algorithm 1, our initialization process is

composed of three stages. In the first stage, the shadow segmen-
tation process is performed. In the second stage, we identify
the highlight-related samples. Finally, the remaining pixels are
assigned the background label and the prior is initialized with
π

(1)
i = (0, 1, 0). To accelerate the processing time of the shadow

and highlight segmentations, we process the integral image.
1) Integral Image: An integral image is a representation of

the original image, which allows for a very fast computation
of rectangular arrays [38]. Let ui and vi denote the horizontal
and vertical axes of the i th pixel in image A, respectively. Let
K(u,v) � {( j) : u j ≤ u, v j ≤ v} be the set of all pixels located
above and to the left of the pixel at location (u, v). The integral
image of A is given by

A(u, v) =
∑

j∈K(u,v)

A j . (6)

Fig. 3(a) illustrates the process of a windowing architecture.
The upper and lower red windows contribute to the calculation
of the background, whereas the yellow window contributes to
the calculation of the shadow and highlight. Using the integral
image, the mean value of pixels inside a window is easily cal-
culated and complexity improves. In Fig. 3(b), the blue region
stands for the original image and the sum of all pixels in the gray

region is A
(

ui , vi
)

. Let {a, b, c, d} be the four corners of a win-

dow [see Fig. 3(b)], then the sum of all pixels inside this window
is given by: A(ua, va)− A(ub, vb)− A(ud , vd )+ A(uc, vc).

2) Shadow Segmentation: Two maps are calculated based on
the integral image, namely the background map and the shadow
map. The background value of pixel i in the background map is
given by

Bi
s =

1

2γ 2
b

[
A(ua, va)− A(ub, vb)− A(ud , vd )+ A(uc, vc)

+ A(ue, ve)− A(u f , v f )− A(uh, vh)+ A(ug, vg)

]

(7)

where {a, b, c, d} and {e, f, g, h} are the four corners of the up-
per and lower windows, respectively [see Fig. 3(a)]. The above-
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mentioned value is calculated using a split-window template
composed of three equally sized squared windows with a size
of γ 2

b . The size of the window is set according to the size of
the object of interest such that the object is contained within
the middle window. The parameter γb is selected such that an
object of interest is fully contained within, and as a result, it
does not contribute to the estimation of the background. There-
fore, the exact size of the object is not required, but only its
bounds. Let the center of this template be in a (ui , vi ) position.
The background map is the mean pixel value while accounting
for the top and bottom windows only. We avoid the middle win-
dow since the object of interest may be covered by this window.
These windows are stacked vertically and not horizontally since
the highlight of the object, in sonar imagery, lies from left/right
(depends on the sonar system) of the shadow region.

The shadow map S i corresponds to the mean value of the
pixels at a squared window located at (ui , vi ) with a size of γ 2

s

S i= 1

γ 2
s

[
A(ua, va)− A(ub, vb)− A(ud , vd )+ A(uc, vc)

]
.

(8)

Parameter γs is chosen to be small enough to keep the object’s
boundaries. Our experiments reveal that γs = 5 gives the best
results. The intensity of pixels in a shadow region is lower than
the intensity of the background. Thus, shadow segmentation is
extracted by identifying pixels with a local mean intensity that
is lower than the mean background intensity. For shadow seg-
mentation, we develop a new initialization method that best fits
sonar images. Our method is inspired by Williams [1]. How-
ever, the work in [1] deals only with object detection, where
the features of the object are of less interest, whereas to achieve
the additional aim of object classification, our work also seg-
ments the object’s regions. More specifically, in contrast to [1],
in our case, the size of the window for calculating the shadow
map should be small to maintain accurate segmentation along
the object’s boundaries. Moreover, we automatically select the
threshold parameter according to the image’s intensity distri-
bution to allow for accurate segmentation in all of the object’s
regions. The label of the i th pixel is initialized as a shadow
label if Bi

s > βsS i , where βs is an automatically set threshold
parameter, as we will explain further. In this case, the prior for
pixel i is replaced with π (1)

i = (1, 0, 0).
3) Highlight Segmentation: In sonar images, the back-

ground’s intensity level is mostly dependent on the structure
of the seabed. A sonar image may contain different types of
seabed structures, such as sand or boulders. In such a case, the
variations in the background’s intensity level are high and the
task of highlight segmentation is challenging. Considering this
challenge, we apply the kth-order statistics [39]. Let Rγs

(u,v) and
Rγb

(u,v) be the set of all pixels in a squared window with sizes γ 2
s

and γ 2
b , respectively, centered at (u, v) excluding the kth pixels

of the largest intensities in each row of the window. The high-
light segmentation is calculated using a small rectangle centered
in the pixel of interest.

Formally, The highlight map Hi is given by

Hi =
∑

j∈Rγs
(ui ,vi )

A j (9)

and the background map is

Bi0
h =

∑

j∈Rγb
(ui0 ,vi0 )

A j (10)

where i0 is an arbitrarily located pixel in the upper right-
hand corner of the original image. We label pixel i as high-
light if Hi > βhBi0

h , where βh is an automatically set thresh-
old parameter, as explained further. The prior is replaced with
π

(1)
i = (0, 0, 1). Note that unlike Bi

s , which is calculated for
each pixel in the image, Bi0

h is constant to preserve the object’s
highlight boundaries.

4) Automatic Setting of Threshold Parameters: We now de-
scribe a method to automatically set the threshold parameters
βs and βh . This is required to increase the robustness of our
algorithm to different seabed environments. Using a fast ap-
proach with reasonable segmentation results, we utilize the ICM
method [40] to extract an initial partition of the image into three
clusters, namely highlight, shadow, and background, denoted
by CH, CS, and CB, respectively. Next, we calculate intensity
thresholds Fs and Fh , defined as the intensities for which the
number of pixels with false segmentation is minimized. The
intensity threshold Fs is determined by solving

Fs=arg min
F

⎛

⎝
|CS|∑

i=1

I(Ai |i∈CS > F)+
|CB|∑

j=1

I(A j | j∈CB < F)

⎞

⎠

(11)
where I is an indicator function that is unity if its argument is
true, and zero otherwise. Similarly, Fh is given by solving

Fh = arg min
F

⎛

⎝
|CB|∑

j=1

I(A j | j∈CB > F)+
|CH|∑

k=1

I(Ak |k∈CH < F)

⎞

⎠.

(12)
Since the thresholds βs and βh stand for the gap between the
local shadow’s mean and background and local highlight’s mean
and background, we set the threshold parameters βs and βh as
the ratio between the intensity thresholds and the average of the
shadow or background clusters. Formally

βs = Fs
1
|CS|

∑
i∈CS

Ci
S

(13)

βh = Fh

1
|CB|

∑
j∈CB

C j
B

. (14)

The initialization process is described in Fig. 4, and its pseu-
docode is given in Algorithm 1.

B. Image Segmentation Using Modified EM

Our LSM sonar image segmentation algorithm is similar in
its structure to the DEM method [31]. Yet, while DEM showed
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Fig. 4. Flowchart of the proposed initialization algorithm. Shadow and high-
light regions are detected by local windows. The thresholds βs and βh are set
automatically. Pixels that are labeled as neither shadow nor highlight are labeled
as background.

satisfactory results for natural images, the results for sonar im-
ages severely degrade (see [37, Figs. 4 and 5]). To fit the case
of sonar images, our LSM method replaces the DEM’s diffu-
sion step with an intermediate step, which takes into account
the local intensity inhomogeneity in sonar images to achieve
more accurate segmentation results. The key idea is to achieve
robustness to different seabed structures by allowing the label-
ing of each pixel to be influenced by the states of its neigh-
bors. While MRF-based methods utilize the spatial dependence
among neighboring pixels via the smoothing prior according to
some model, our approach is based on utilizing both the local
texture and local intensity of the neighborhood.

1) Gamma Mixture Model for Spatially Independent EM:
The basic EM consists of a conditional expectation (E-step) of
the log likelihood and its maximization (M-step). The E-step is
given by

C(�|�(m)) ≡ E{ln( f [y|�])|�(m),A} (15)

where �(m) are the estimates of the parameter sets � at the mth
iteration. Based on (5) and (15), the conditional expectation is
given by

C(�|�(m))=E

[
N∑

i=1

L∑

l=1

Ii,l[ln(πi,l)+ ln(φ(Ai |θl))]
∣∣∣�(m),A

]

=
N∑

i=1

L∑

l=1

E
(
Ii,l |�(m)

)
︸ ︷︷ ︸

v
(m)
i,l

[
ln(πi,l)+ ln(φ(Ai |θl))

]
.

(16)

Algorithm 1: Proposed Initialization Algorithm.
Input: The original image A;
Output: The pixel labels;
Begin
1: Calculate A using (6);
2: Calculate Bi0

h using (10);
3: Set the thresholds βs and βh using (13) and (14);
4: for each pixel i do
5: Calculate background map Bi

s using (7);
6: Calculate shadow map S i using (8);
7: if Bi

s > βsS i then
8: pixel i is labeled as shadow;
9: else

10: Calculate highlight map Hi using (9);
11: if Hi > βhBi0

h then
12: pixel i is labeled as highlight;
13: else
14: pixel i is labeled as background;
15: end if
16: end if
17: end for
End

The expression for the posterior v(m)
i,l is given by [4]

v
(m)
i,l =

1

Dπ
(m)
i,l φ(Ai |θ (m)

l ) (17)

where D is a normalization factor given by
∑

l=1
Lπ

(m)
i,l φ(Ai |θ (m)

l ). In the M-step, the parameter set �(m) is up-
dated by

�(m+1) = arg max
�

C(�|�(m)) (18)

with the constraints
∑l

l=1 πi,l = 1 for i = 1, ..., N . This maxi-
mization problem is solved using a Lagrange multiplier η and
by maximizing the following quantity:

ϒ =
L∑

l=1

v
(m)
i,l [ln(πi,l)+ ln(φ(Ai |θl))]+ η

(
L∑

l=1

πi,l − 1

)
.

(19)
The solution of ∂ϒ/∂πi,l = 0 yields the following equation:

v
(m)
i,l

πi,l
+ η = 0. (20)

From (17), we can get

L∑

l=1

v
(m)
i,l = 1 (21)

and using (20) and (21), we get the update

π
(m+1)
i,l = v(m)

i,l . (22)
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Fig. 5. The second-order neighborhood configuration of pixel i in Ni . This
local neighborhood contains eight pixels.

The update for the parameter μl is the solution of the equation
∂ϒ/∂μl = 0 and is given by the closed form expression

μ
(m+1)
l =

∑N
i=1 π

(m+1)
i,l Ai

∑N
i=1 π

(m+1)
i,l

=
∑N

i=1 v
(m)
i,l Ai

∑N
i=1 v

(m)
i,l

. (23)

The estimation of αl is set by solving ∂ϒ/∂αl = 0, i.e.,

ln
(
α

(m+1)
l

)
− ψ

(
α

(m+1)
l

)
= −

∑N
i=1 v

(m)
i,l ln

(
Ai

μ
(m)
l

)

∑N
i=1 v

(m)
i,l

(24)

where ψ(·) is the digamma function. Since (24) has no closed
solution, we adopt the following approximation [41]:

ln(x)− ψ(x) ≈ 1

2x
+ 1

12x2
. (25)

Substituting (25) into the left-hand side of (24) leads to an
approximate closed solution for α(m+1)

l , as the positive root of
the equivalent quadratic equation.

2) Intermediate Step: In LSM, we utilize the expected spa-
tial dependence between the image’s pixels through an I-step
performed in-between the E-step and the M-step. To that end,
we already assign labels to pixels during the I-step such that
in the M-step, we update the set parameters �(m) based on
the assigned labels. The labeling of pixels in the I-step is
performed by

l̂ (m)
i = arg max

l∈L
v

(m)
i,l (26)

where v(m)
i,l is obtained during the E-step. Let the neighbor-

ing group of a pixel i be Ni . Note that Ni includes a set
of pixels such that i �∈ Ni and ∀ i ′ ∈ Ni , i ∈ Ni ′ . In our
application, the second-order neighborhood system is cho-
sen [20]. The neighborhood of pixel i is defined by Ni =
{Ai,1, Ai,2, Ai,3, Ai,4, Ai,5, Ai,6, Ai,7, Ai,8}. Fig. 5 shows such
a neighborhood configuration. Let � l̆

Ni
be the number of pix-

els in Ni with an assigned label equal to l̆ and τ and δ be the

incidence threshold and intensity threshold, respectively. Let O
be the group of outlier pixels. Then, pixel i ∈ O if the following
two conditions hold:

1) $ l̆ ∈ L s.t. � l̆
Ni
> τ ;

2) |Ai −median(Ni )| > δ.
Due to the intensity inhomogeneity of sonar images, we give

special treatment to pixels, which are identified as outliers. For
each identified outlier, we enforce the smooth posterior to main-
tain the maximum value of the label that corresponds with the
majority of its pixel’s neighborhood. Labeling in the I-step is
performed by introducing a smoothed posterior, v(m+1)

i,l whose
value in the (m + 1)th iteration is

v
(m+1)
i,l =

⎧
⎨

⎩

ζi,l , if i ∈ O
�

(m+1)
i,l∑L

l=1 �
(m+1)
i,l

, otherwise
(27)

ζi,l =
{

1, if l = l̂ (m)
k

0, otherwise
(28)

and the weight �(m+1)
i,l of each i th pixel for each label l is

�
(m+1)
i,l =

⎡

⎢⎣
1√

2π (σl)2
· exp

⎛

⎜⎝−
(

Ai − μ(m)
l

)2

(σl)2

⎞

⎟⎠

⎤

⎥⎦

(
1−

�l
Ni
|Ni |

)

.

(29)
The parameter σl is the standard deviation of the pixels belong-
ing to label l and is calculated using the parameter sets θl as
follows:

σl = μ
(m)
l√
α

(m)
l

. (30)

Note that in (29), to exclude local outliers and to keep the
boundaries of the object, higher weight is given to the majority
labels of the local neighborhood as well as to the label that suits
the statistics of the pixel, i.e., �i,l → 1 as �N l

i
→ |Ni |, which

reflects the local label information. Moreover, as the statistics of
Ai suits the model of the lth label, �i,l gets higher value. From
(29), we observed that a priority is given to a label l in �(m)

i,l
whose �N l

i
value is high. This means that the smooth prior of

the i th pixel seeks a homogeneous environment.
3) Connecting the I-step and the M-step: The connection

between the I-step and the M-step is performed as follows. First,
posterior v(m)

i,l is substituted by v(m+1)
i,l from (27) in the update

of the prior probability πi,l in the M-step. Next, the parameter
set is updated through a hard decision on the smooth posterior.
This is done to improve the convergence rate. Formally, at the
beginning of the M-step, we replace the posterior v(m)

i,l with

ω
(m+1)
i,l =

{
1, if l = l

(m+1)
i

0, if l �= l
(m+1)
i

(31)

where the assigned label for pixel i at iteration number (m + 1)
is given by

l
(m+1)
i = arg max

l∈L
v

(m+1)
i,l . (32)
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Algorithm 2: LSM Segmentation Algorithm.
Input: The original image A;
Output: Pixel labels {li };
Begin

1: Initialize the priors {π (1)
i }, ∀ i , using algorithm (1);

2: Set {v(1)
i,l } ← {π (1)

i };
3: Calculate {θ (1)

l }, ∀ l ∈ L;
4: Set m = 2;
5: while m < Mmax do
6: Calculate the posterior probabilities {v(m)

i,l } using
(17);

7: Perform a hard decision on {v(m)
i,l } and get pixels

label {̂l (m)
i };

8: Calculate {v(m+1)
i,l } and {ω(m+1)

i,l } using (27)–(32);

9: Substitute {v(m)
i,l }← {v(m+1)

i,l } and update prior
probabilities using (22);

10: Calculate gamma distribution parameters using (23)
and (24) with {v(m)

i,l } ← {ω(m+1)
i,l };

11: if |U (m) − U (m−1)| < ε then
12: Stop the loop and output the pixel labels {l(m)

i };
13: else
14: Set the loop counter m = m + 1 and go to (6);
15: end if
16: end while
17: Get pixel labels {l (m)

i };
End

To summarize the operation of our segmentation algorithm,
we illustrate a single cycle of the segmentation process in Fig. 6.
The algorithm iterates until the number of maximum iteration
steps Mmax is reached or the results converge. Let U (m) be the
log of the likelihood given in (5). Then, the latter is determined
when |U (m) − U (m−1)| < ε, where ε is a user-defined parameter.
The pseodocode for the process is given in Algorithm 2.

V. EXPERIMENTAL AND COMPARATIVE STUDIES

In this section, we explore the performance of LSM, as well
as those of four state-of-the-art methods that represent different
segmentation approaches and that yielded the best results for
the segmentation of sonar images (to achieve object detection
and classification). The first benchmark is the E-DS-M [32],
which uses the evidence theory in the EM’s I-step; the sec-
ond is the Nguyen method in [8], which employs an improved
formalization for the smoothing prior in the MRF model; the
third benchmark is the robust fuzzy thresholding technique [42],
which utilizes soft clustering via fuzzy membership degree; and
the fourth benchmark is the graph cut algorithm [10], which uses
a graph representation of the image. An efficient implementation
of the graph cut method for sonar image segmentation [43] has
been utilized. In this implementation, the initial seeds are cho-
sen after the ICM segmentation results. The implementation
of the graph cut algorithm, for sonar imagery, was performed
according to [11]. In this implementation, the highlight region
was segmented according to the ICM method, and the graph cut

Fig. 6. Single cycle of the proposed segmentation algorithm. The intermediate
step is inserted between the E-step and M-step of the EM algorithm so as to
utilize local spatial information.

algorithm splits the image into two groups of pixels, one as-
signed to the shadow and the second to the background.

To study the effect of the seabed texture on the proposed
segmentation method, three types of seabed textures are ana-
lyzed: sand, seagrass, and sand ripples. The proposed initializa-
tion algorithm is compared with the most common approaches,
namely the K-means [44] algorithm and the four-region [45]
method. We test performance over both simulated sonar images
and real sonar images. To verify the performances of LSM as
blind segmentation method, we analyze the segmentation results
on different kinds of object’s shapes. This includes a synthetic
cylindrical object and arbitrary geometry of real underwater
objects.

Unless otherwise mentioned, the following setting is con-
sidered: the compared methods are initialized with a four-
region, with a window of 5× 5 pixels. This window has
been demonstrated to produce satisfactory results [45]. The
parameters of the proposed initialization algorithm are set
with: γb = 50, γs = 5, and k = 3 , which give the best ini-
tialization results. The threshold parameters τ and δ are set
to 4 and 1.5, respectively. The maximum number of itera-
tions is set to 50 and the convergence threshold is set to
ε = 0.001. To choose the parameters of the benchmark meth-
ods, we perform a statistical analysis. For the E-DS-M, we
choose γ1 = 0.1 and γ2 = 1.5 as the best fit, as obtained
in the numerical analysis of [32]. For the Nguyen method,
β = 12 is used [8] and the neighborhood ∂i is a square win-
dow with a size of 3× 3 pixels. For the fuzzy thresholding
method, the best results are obtained using a median filter with
a neighborhood block with a size of 3× 3 and a fuzziness index
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of 2 [42]. As a good compromise [43], the parameters h and v
of the graph cut implementation were set with 0.1

A. Quantitative Measures

The performance analysis of a sonar image segmentation is
more than the counting of erroneous pixel identification and
should involve determining the shape and formation of the seg-
mented objects. Yet, we have not yet found a proper definition
for such measures. Considering this need, in this section, we for-
malize our quality measures for the segmentation of underwater
images containing a submerged object. As statistical quantita-
tive measures, we use the misclassification ratio (MCR) [46] and
the probabilistic rand (PR) index [47]. MCR is defined as the
number of misclassified pixels normalized by the total number
of pixels and is given by

MCR =
∑N

i=1 I(li �= Gi )

N
. (33)

The PR index measures the similarity between each pixel pair
in the image and is given by

PR = 1
(N

2

)
∑

i, j
i< j

[
I
(

li = l j

)
pi j + I

(
li �= l j

)
(1− pi j )

]
(34)

where pi j = Prob(Gi = G j ). Clearly, segmentation improves,
the higher the PR is the lower the MCR is.

To allow for a quantitative assessment of the segmented ob-
ject, we determine three shape measures, namely, the position
fit ςp, the shape fit ςs , and the size fit ςn [48]. The position fit is
given by

ςp = 1

2

∑

c∈CH,CS

(
1− �

c
u +�c

v

2

)
(35)

where �c
u is the difference in the horizontal direction of the

center of the object (in region c) between the segmentation
results and the ground-truth map, �c

v is the difference in the
vertical direction, and CH and CS are the highlight and shadow
clusters, respectively. Explicit expressions for �c

u and �c
v are

given by

�c
u =

1

N c
u

|uc
Si
− uc

Gi
| (36)

�c
v =

1

N c
v

|vc
Si
− vc

Gi
| (37)

where N c
u and N c

v are the number of rows and columns in the
image, uc

Si
and vc

Si
are the average of the abscissas and ordinates

of the object (in region c), and uc
Gi

and vc
Gi

represent the ground-
truth map averages. The size-fit quality measure is given by

ςn = 1

2

∑

c∈CH,CS

(
1− |N

c
f − N c

g |
N c

f + N c
g

)
(38)

where N c
f and N c

g are the number of pixels of the object at
region c in the segmentation results map and the ground-truth

map, respectively. Shape fit is given by

ςs = 1

2

N c
f ∩g

N c
f ∪g

(39)

where N c
f ∩g is the number of pixels in the intersection between

the results map and the ground-truth map in the object region c
and N c

f ∪g is the union between the two maps. Clearly, segmen-
tation results improve as ςp, ςs , and ςn increase.

To further examine segmentation performance, we consider
the geometrical features of the segmented object. Specifically,
we consider the perimeter P of the object, area ratio Rarea,
and solidity Sol. The area ratio is defined as the ratio between
the areas of the shadow and the highlight regions, and solidity
is the ratio between the area of the object and the area of its
convex hull. Based on these geometrical features, we define the
following evaluation indices:

κperim = 1

2

(
|PS

f − PS
g | + |PH

f − PH
g |
)

(40)

κsol = 1

2

(
|SolS

f − SolS
g | + |SolH

f − SolH
g |
)

(41)

κarea = |Rarea, f − Rarea,g| (42)

where PS
f and PS

g are the segmented and ground-truth perime-

ters of the object’s shadow, respectively, PH
f and PH

g are the
segmented and ground-truth perimeters of the object’s highlight,
respectively, SolSf and SolSg are the segmented and ground-truth

solidities of the object’s shadow, respectively, SolHf and SolHg are
the segmented and ground-truth solidities of the object’s high-
light, respectively, and Rarea, f and Rarea,g are the segmented and
ground-truth area ratios of the object, respectively. In general,
segmentation improves, the lower the values of κperim, κarea, and
κsol are.

B. Results on the Synthetic Images

An example of the synthetic sonar images used in our simu-
lations is shown in Fig. 9(a). The figure contains three images
of sand, seagrass, and sand ripples. Sand and seagrass seabed
textures are generated according to the models in [49], whereas
the sand ripples texture is generated according to [50]. The
object region and background are synthesized separately. The
object’s intensity level is modeled by a gamma distribution with
μs = 120 and σs = 10 for the shadow region and μh = 1 and
σh = 0.1 for the highlight region. Similar to the model proposed
in [37], the object and background are superimposed as follows:

Ai =

⎧
⎪⎨

⎪⎩

0.8χi,h + 0.2χi,b, if i ∈ {CH}
0.8χi,s + 0.03χi,b, if i ∈ {CS}
χi,b. if i ∈ {CB}

(43)

where χi,h , χi,b, and χi,s stand for the intensity level of the
i th pixel in the highlight, background, and shadow regions,
respectively. The size of the synthetic images is 300× 300. A
cylinder structure is considered as the object in all synthetic
images. To test performance statistically, we performed 1000
Monte Carlo simulation runs. In each run, a new background
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Fig. 7. Misclassification ratio (MCR) values of LSM with different γ and
δ values using the synthetic seagrass image in Fig. 9(a). The best results are
obtained with τ = 4 and δ = 1.5.

image was realized, each of which was corrupted by a speckle
noise with an STD of 0.3.

1) Parameters Study of γ and δ: To comment on the sensi-
tivity of our algorithm to parameter choice, in this section, the
effect of the two parameters γ and δ is analyzed. These two
parameters control the size of the outliers group O. Specifically,
a small value of γ increases the number of outliers, whereas
a large value increases the false segmentation. In contrast, δ
controls the relative intensity threshold for outlier declaration.
We study these two parameters in the synthetic seagrass im-
age presented in Fig. 9(a). In Fig. 7, we show the MCR (33)
values calculated for different values of γ and δ. To set the
optimal thresholds, a 2-D search for the threshold combination
of the incidence threshold and intensity threshold is required.
Fortunately, �l

Ni
∈ {1, ..., 8} such that the complexity of this

operation is low. Hence, we calculate the MCR(γ, τ j ) values ∀
τ j = {1, ..., 8}, and select those γ and τ values that lead to min-
imum MCR. We observe that the best MCR results are obtained
for γ = 4 and δ = 1.5.

2) Results for the Proposed Initialization Algorithm: The
initialization results of the benchmark methods, K-means, four-
region, and our LSM are presented in Fig. 8 for the seagrass
(upper row) and sand ripples (lower row) examples. We notice
that the object’s shadow is almost fully blended with shadow
pixels. Similarly, due to the high-intensity inhomogeneity that
exists in the seagrass image, the results presented in Fig. 8(c)
show false segmentation for four-region initialization. How-
ever, the results also show that the borders of the highlight and
shadow of the cylindrical object are preserved. The results of
Fig. 8(e) show that the proposed initialization method achieves
a clean segmentation performance. For the sand ripple back-
ground, the results presented in Fig. 8(g)–(j) show a much more
noisy segmentation for all four initialization methods. Note that

the results of the proposed method in Fig. 8(e) and (j) for pix-
els near the edges are mostly labeled as the background. This
is because, due to the windowing, fewer pixels are included in
Bi

s near the edges of the image, and thus the local background
is estimated on less pixels than windows located far from the
edges. As a result, near the edges, less pixels pass the shadow
and the highlight tests.

Fig. 8(c) shows that four-region is better than K-means in
terms of false shadow segmentation. However, clearly the best
segmentation result is obtained when using the LSM. In par-
ticular, the object’s borders are more accurate and the false
segmentations rate is low.

3) Quality Analysis: Segmentation results for benchmark
methods and those of our LSM are illustrated in Fig. 9(b)–(d), re-
spectively. The assigned pixels to the labels {S,B,H} are shown
in different colors: black for shadow, brown for background, and
yellow for highlight. While all three methods segment the im-
age well, segmentation performance degrades significantly the
more complex the background is. For the seagrass image in
Fig. 9(a), we observe many false segmentations, produced by
the Nguyen and fuzzy thresholding methods. This includes an
enlargement of the object’s shadow region. In contrast, E-DS-
M has a cleaner background region compared to the Nguyen
method. However, the borders of the highlight and shadow re-
gions are corrupted. This phenomena does not occur with our
LSM method, which produces clean segmentation, and the ob-
ject’s highlight and shadow are more accurate, compared to the
benchmark methods. A similar effect is observed for the sand
ripples image in Fig. 9(a). The problem of false segmentation
that appears when operating the Nguyen method is more acute,
and the object’s shadow region blends in with the sand ripples.
The performances of E-DS-M, graph cut, and our LSM are
cleaner than the Nguyen, and these methods keep the object’s
borders in the highlight region. However, in the E-DS-M and
graph cut methods, the object’s shadow borders are less accurate
than the ones produced by the LSM.

4) Quantitative Analysis:
a) MCR and PR Analysis: We start by showing the per-

formance in terms of MCR (33) and 1-PR, where PR is given
in (34). The MCR and PR measures are indicators of the image
segmentation’s accuracy. The results are shown in Fig. 10 along
with the 95% confidence intervals. All methods, except for the
fuzzy thresholding, have an average MCR of less than 1% and
an average PR of above 98% for the sand image, which is rela-
tively homogeneous. However, for the complex sand ripples and
seagrass images, which have strong intensity inhomogeneity,
the performances of the compared methods severely degrade,
whereas those of our LSM are not affected. LSM’s small con-
fidence interval shows its robustness to different background
realizations. We therefore conclude that LSM is specifically
targeted to a complex seabed environment.

b) Analysis of Shape Measures: Since for object classi-
fication, the shape of the detected object is of interest, in our
analysis, we also consider the shape, size, and position of the
segmented highlight and shadow regions. Table II shows the
shape measures, ςn (38), ςs (39), and ςp (35) for the three com-
pared schemes. The values in the table are the mean values and
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Fig. 8. Comparison of the initialization methods for the segmentation of the seagrass and sand ripple images: (a) Original seagrass image. (b)–(e) Provide
results with seagrass image of K-means, four-region, ICM, and our LSM, respectively. (e) Original sand ripples image. (g)–(j) Provide results with sand ripples
image of K-means, four-region, ICM, and LSM, respectively. Results show that our LSM produces the cleanest and most accurate results.

Fig. 9. Final segmentation results for the synthetic sonar images. Each column corresponds to a different sonar image. Synthetic sonar images of cylindrical
objects and final segmentation results of Nguyen, E-DS-M, graph cut, fuzzy thresholding, and LSM (from top to bottom, respectively). (a)–(c) For sand, seagrass,
and sand ripples background, respectively. The colors in the segmentation maps represent: black for the shadow region, yellow for the highlight region, and brown
for the background region. The results show the most accurate segmentation result for our LSM.
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Fig. 10. PR (34) and MCR (33) values for the synthetic sonar images with speckle noise (STD = 0.3). The 95% confidence interval is introduced on each bar
in the figure. (a) Results for the MCR. (b) Results for the (1-PR). The results show that the LSM consistently generates better MCR and PR than the comparison
algorithms.

TABLE II
COMPARISON OF THE GENERAL SHAPE PROPERTIES ςs (39), ςn (38), AND ςp (35) FOR SYNTHETIC SONAR IMAGES WITH SPECKLE NOISE (STD = 0.3)

Results show that for complex seabed texture, such as sand ripple and seagrass, LSM achieves the best results.

the 95% confidence intervals (in brackets). From Table II, we
observe that the average ςp for all methods is almost not affected
by the background type. We also observe some inconsistencies
between the performance of the five methods for different back-
grounds, in terms of the other measures. For example, E-DS-M
performs poorly for the seagrass image, whereas those of the
Nguyen method reduces for the sand ripples image. However,
the proposed method shows robust performance with an aver-
age of ςn , ςs , and ςp above 0.98, 0.88, and 0.99, respectively,
for all images. This suggests that the proposed algorithm also
outperforms the compared algorithms in terms of the shape of
the segmented object. We report that similar trends are obtained
for higher speckle noise.

c) Analysis of Geometrical Featuresa: The object’s geo-
metrical properties are usually of vast importance in the object
classification process. In this section, we analyze our segmen-
tation method performances and the four benchmark methods,
in terms of the geometrical features of the segmented high-
light and shadow regions. Table III shows the segmentation

performance in terms of our geometrical quality measures, κperim

(40), κarea (42), and κsol (41). From the results, we conclude that
the perimeter of the object in the compared methods is mostly
corrupted for seagrass and sand ripples backgrounds. Also in
this case, LSM achieves the best performance. Furthermore, the
LSM’s relatively small confidence intervals and the consistency
of the results for the different background types show that the
LSM is robust for the seabed environment.

C. Results on Real Sonar Images

To complete our investigation, we now discuss results ob-
tained for a set of real sonar images shown in Fig. 12(a). The
three images were produced by an EdgeTech 4125 sidescan
sonar and we refer to them as body, fish, and bicycle. The size
of the images is 230× 217, 250× 385, and 350× 500 pixels,
respectively.

1) Initialization Results: We next explore the tradeoff be-
tween the miss segmentation and false segmentation of the
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TABLE III
COMPARISON OF THE GEOMETRICAL FEATURES’ ERRORS κperim (40), κarea (42), AND κSOL (41) FOR

SYNTHETIC SONAR IMAGES WITH SPECKLE NOISE (STD = 0.3)

Results show that LSM achieves the most accurate geometrical features of the segmented object.

Fig. 11. False segmentation and miss segmentation values [from (44) to (47)] for the body image versus the intensity threshold F . The results of automatic
selection of thresholds are Fh = 1.07 and Fs = 1.15 and are marked with black lines. (a) Results for the highlight region. (b) Results for the shadow region. The
results show that our automatic procedure for choosing the threshold achieves a favorable tradeoff.

highlights and shadows over the real sonar images at the out-
put of the initialization process. Let FSh and FSs be the false
segmentation indices in the highlight and shadow regions, re-
spectively, such that

FSh = 1

|ĈH|
∑

i∈ĈH

I(li �= Gi ) (44)

FSs = 1

|ĈS|
∑

i∈ĈS

I(li �= Gi ) (45)

where ĈH and ĈS are the clusters of highlight and shadow in
the segmentation results, respectively, li is the label of pixel i
in the segmentation results, and Gi is the label of pixel i in the
ground-truth map G. Similarly, miss segmentations MSh and
MSs are defined as the average number of pixels that belong to
the highlight and shadow clusters in G, respectively, and were

not correctly assigned in the segmentation results. Formally

MSh = 1

|Cg,h|
∑

i∈Cg,h

I(li �= Gi ) (46)

MSs = 1

|Cg,s |
∑

i∈Cg,s

I(li �= Gi ) (47)

where Cg,h and Cg,s are the highlight and shadow clusters in
the ground-truth map G, respectively.

Fig. 11(a) and (b) shows the false segmentation and miss
segmentation values of the initialization results for the highlight
and shadow regions of the body image. The curves in Fig. 11
are generated by computing (44)–(47) from the results of the
proposed initialization method for each intensity threshold F on
the curves. The automatic process for setting the threshold levels
determine the intensity thresholdsFh andFs to be 1.07 and 1.15,
respectively, and is represented by the vertical lines in Fig. 11(a)
and (b). We observe that our process for automatic determination
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Fig. 12. Final segmentation results for real sonar images (original image courtesy of EdgeTech [5]). The color in the segmentation maps represent: black for the
shadow region, yellow for the highlight region, and brown for the background region. Real sonar images and final segmentation results of the Nguyen, E-DS-M,
graph cut, fuzzy thresholding, and LSM (from top to bottom, respectively). (a)–(c) For bicycle, body, and fish, respectively. The best segmentation results are
obtained by the LSM.

of the thresholds determines the intensity thresholds for both the
highlight and shadow regions around the crossing point of the
curves, i.e., our method produces a favorable tradeoff between
the false segmentation and the miss segmentation results.

2) Segmentation Results: The segmentation results are pre-
sented in Fig. 12. For the bicycle image, we observe obvious
false segmentation areas when using the Nguyen, E-DS-M and
fuzzy thresholding benchmarks, i.e., a large region is incorrectly
labeled as highlight. For the body image, the shadow of the ob-
ject was accurately segmented by all methods, except for the
graph cut. However, using the Nguyen method, the highlight
of the object is corrupted. Although it still exists, the highlight
corruption is less apparent in using the E-DS-M; yet, a much
cleaner and accurate segmentation is achieved by the LSM. Con-
ditions of high intensity inhomogeneity can be clearly seen in
the fish image. This inhomogeneity causes a serious degradation
in the segmentation performance of all methods. However, com-
pared to the benchmark methods, the LSM and graph cut meth-
ods produce cleaner results with no obvious false segmentation.
The results in Fig. 12 show that the segmentation performance of

graph cut is cleaner, i.e., fewer background-based false negative
exists. However, for ADAC’s main task of object classification,
the objective of the segmentation part is not just to provide a
clean segmented image, but also to keep the object’s formation
and avoid distortions to its highlight and shadow regions. This
is important since, later, the segmented highlight and shadow
areas are used as extracted features for the classification. In that
context, the results in Fig. 12 show that graph cut significantly
distorts the highlight and shadow regions of the objects, whereas
LSM provides an accurate object-related segmentation.

D. Sea Trial Results

To comment on the performance of LSM in a realistic sea en-
vironment of complex seabed and over different sonar systems,
we performed three sea experiments. In these experiments, we
used a 400-kHz multibeam sonar EM 2040 mounted on the RV
Bat-Galim research ship and two Kraken-made SAS systems
mounted on the sides of our own A18 5.5 m Eca Robotics Inc.,
AUV [51]. A picture of the SAS system onboard our AUV is
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Fig. 13. Photographs of the targets considered in the sea trial study and the Eca Robotics AUV A18. (a) Two targets were used: one of a cone shape (right-hand
side of the figure) and other of the tube shape (left-hand side of the figure). (b) A18 AUV and its SAS system. Picture taken during our sea experiment

Fig. 14. Final segmentation results from our sea trial. (a) Multibeam (EM 2040) sonar image. (b) Multibeam sonar image with two synthetic cylindrical objects.
(c) Two-sided synthetic aperture sonar (Kraken). Real sonar images and final segmentation results of the Nguyen, E-DS-M, graph cut, fuzzy thresholding, and
LSM (from top to bottom, respectively). However, LSM and graph cut achieves the most clean results, LSM has the most accurate results.
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shown in Fig. 13(b). The first trial included the multibeam sys-
tem scanning an area of depth 25 m and detecting two targets of
truncated metallic cones whose picture is shown in Fig. 13(a).
The second experiment involved the multibeam system scan-
ning an area of extreme complex seabed that includes rocks,
sand, and reef at depth of 20 m. The third experiment included
the AUV scanning with its SAS as deserted gas well as depth of
1000 m. The three produced images are of complex background
and include diverse targets. To allow reproducibility, we share
these original three sonar images in [52].

The resulting original multibeam sonar image from the first
experiment is shown in Fig. 14(a). The image includes two tar-
gets (shown in the middle of the image), a diverse background
of sand (right side), rocks covered with sediments (middle),
exposed rock (left upper corner), and a crack (left-hand side).
Segmentation results for LSM and the other four benchmark
methods are shown below the original image. From the segmen-
tation results, we observe that the shadow of the object is clearer
than the highlight. Hence, only pixels that relate to the shadow
of the objects are segmented well. Comparing the segmenta-
tion performance, we conclude that also for the sonar image
generated in our experiment, LSM outperforms the four bench-
mark methods in terms of segmentation accuracy of shadow and
background regions, as well as in preserving the shape of the
segmented object.

The sonar image obtained in the second trial is shown in
Fig. 14(b). The image includes a highly complex background of
rocks, boulders, and sand ripples. To test segmentation perfor-
mance, we included two synthetic targets shown in the middle
and right lower side of Fig. 14(b). One target is placed on a rocky
area, whereas the other is placed on sand ripples. We observe
that all methods segmented successfully the object on the rocky
area, whereas the segmentation results for the object on the sand
ripple were satisfactory only for graph cut and LSM. The seg-
mentation results in Fig. 14(b) revealing that LSM obtained the
most clean background.

The sonar image obtained in the third trial is shown in
Fig. 14(c). In column (c) of Fig. 14, we introduce the segmen-
tation results of LSM and the benchmark for the SAS image.
In the middle of the figure, we see the sonar reflection from the
gas well. This structure includes a 4-m-high metal pole whose
highlight intensity is extremely high and whose shadow is very
long. The result is an image with a complex distribution for
the highlight and shadow regions. However, we observe that all
methods segment successfully the shadow region of the object,
strong intensity inhomogeneity in the original image causes a
severe degradation in the segmentation results of the highlight
and background regions. In the segmentation results of fuzzy
thresholding, the highlight region of the object is merged with
the background. Also here, LSM achieves the most clean results
while keeping the object’s boundaries.

E. Comparison of Running Time

Since the I-step is performed as part of the EM’s main loop,
it does not influence the complexity of the whole process and

Fig. 15. Running time for the five compared segmentation methods for dif-
ferent sized sonar images. The maximum number of iterations is 50 and the
convergence threshold is set to ε = 0.001. The results show that the graph cut
method is faster than the other algorithms.

the complexity of the LSM is similar to the basic unconstrained
EM algorithm, namely, O(MmaxNL). This is similar to the com-
plexity of the Nguyen method, whereas the complexity of the
E-DS-M is O(MmaxNL2).

To demonstrate the running time of the LSM and compare
it with that of the benchmark methods, in Fig. 15, we compare
the average running time of the five methods, as a function of
the sonar image size. All experiments were performed using a
MATLAB R2011a installed onboard an Intel(R) Core(TM) i7-
3770 CPU @3.4 GHz, 8GB RAM processor. We observe that
for an image of 150× 150 pixels and above, the E-DS-M is
time consuming and cannot be used for real-time applications.
We also observe that the Nguyen method is slightly faster than
our LSM. The proposed algorithm is time consuming compared
to the graph cut and fuzzy thresholding methods. However, the
performance and accurate results of the LSM, as shown above,
compensates for this drawback.

VI. CONCLUSION

In this paper, we introduced the LSM: a new, unsupervised
segmentation algorithm used for object detection and classifica-
tion in sonar images. LSM aims to overcome the problem of in-
tensity inhomogeneity, which exists in complex seabed textures,
such as sand ripples or seagrass, to accurately label the pixels
related to the object’s highlight and shadow. Our algorithm is
built around a simple, yet effective model, which incorporates
the expected correlation among neighboring pixels using an in-
termediate step between the E-step and the M-step of the EM al-
gorithm. To achieve robustness to different seabed structures, we
also proposed an automatic process for setting the segmentation
thresholds used during the algorithm’s initialization process. We
measured LSM performance using novel quality measures that
examine not only the label’s assignment result, but also the seg-
mentation quality in terms of the segmented shape, structure,
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and area. Our numerical and experimental results showed that,
compared to benchmark segmentation methods, the LSM pro-
duces accurate segmentation for complex seabed structures,
even in the presence of significant speckle noise. Since the main
challenge in sonar imagery is still the noisy background, future
research on joint image denoising and segmentation is planned.
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