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Abstract—We consider the challenge of tracking and estimating
the size of a single submerged target in a high reverberant un-
derwater environment using a single active acoustic transceiver.
This problem is common for a multitude of applications, ranging
from the security and safety needs of tracking submerged vehicles
and scuba divers, to environmental research and management
implications such as the monitoring of pelagic fauna. Considering
that the target can be either slow (e.g., a scuba diver) or fast-
moving (e.g., a shark), we avoid continuous signalling, and rely
on the emission of wideband pulses whose reflection pattern are
evaluated and reshaped in a time-distance matrix. As opposed
to common approaches that track targets through template
matching or by using tracking filters, we avoid making difficult
assumptions about the target’s reflection patterns or motion type,
and instead perform probabilistic tracking using a constraint
Viterbi algorithm, whereby detection is determined based on
maximum likelihood criterion. In this process, we use the
expectation-maximization (EM) approach to manage stationary
reflections through distribution analysis, which otherwise may
be misidentified as targets. Based on the tracked path, we then
evaluate the target’s size. To test our approach, we performed
extensive simulations as well as eight sea experiments in different
environmental settings to track both a scuba diver and a sandbar
shark (Carcharhinus plumbeus). The simulation results show a
tracking performance that is close to the Cramér-Rao lower
bound, and the experiment results show a good trade-off between
detection rate and false alarm rate for a low signal-to-clutter ratio
of 5 [dB], and average tracking error of 1.5 [m] and 6.5 [m] in
the detections of a scuba diver and sandbar shark, respectively.
For reproducibility, we share our sea experiment data.

Index Terms—Underwater acoustic detection, Track-before-
detect, Tracking moving targets, Detection in a reverberant
environment, Shark detection, Scuba diver detection

I. INTRODUCTION

We consider the challenge of automatic tracking of a
single submerged target that is slowly or fast moving in a
high reverberant environment (e.g., a shallow water reef).
For ease of deployment, we consider mono-static detection
using a single transceiver, and focus on active detection. This
capability is in high demand for security and environmental
research implications. For security needs, a terrorist attack on
a marine facility is considered a game changer in terms of
foreign policy [1], [2], [3]. The considered scenario involves
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scuba divers approaching a marine facility such as a gas
rig, a drilling platform or a harbour exit, and either directly
attacking it or deploying submerged mines to disable maritime
traffic. The scuba divers may arrive by boats, small submerged
vehicles or swimming. To secure coastal facilities, the timely
detection of approaching scuba divers or deployed mines is
required. In addition, it is important to evaluate the location
of the suspected object so that efficient counter-measures can
be employed.

With regard to environmental research and management, a
reliable scheme of submerged target tracking may be useful
for the detection and size estimation of pelagic species.
Abundance indices of highly migratory fauna often rely on
fishery-dependent data, which are known to be biased towards
more vulnerable species as well as certain types of habitats or
gear [4]. In addition, fishery records hinge upon an incentive
to report and are thus complicated by the typical omission of
illegal, unreported and unregulated (IUU) fishing as well as
discarded or recreational catch [5]. To deal with these types of
biases, it is necessary to develop indiscriminative and reliable,
fishery-independent methods. To this end, acoustic systems
have been increasingly used for the detection of marine fauna
during ecological surveys [6].

A few methods showed capability to passively detect scuba
divers in ranges of tens of meters [7] or at low signal-to-noise
ratio [8]. Yet, these methods rely on an array of receivers to
achieve directivity, and detect specific high frequency sounds
produced by the diver’s breathing system, which do not apply
for the detection of marine fauna. For these reasons, in this
work we use active acoustics. Since the subject target may
be close to the sea surface or seabed, it might be difficult to
distinguish from clutter or unwanted objects such as rocks,
anchors, chains, etc. Considering this challenge, one option
is to use template matching, where the reflected signal is
compared with a fingerprinting sample using a matched filter
[9]. However, template matching requires prior knowledge
about either the environment or the target, which are both
considered unknown in the herein provided case. Detection
of a moving target is also viewed as a tracking problem
and solutions are traditionally obtained through the use of
tracking filters; based on an assumed motion model, the filter
is set to track multiple possible paths [10], [11]. A different
approach is to track the distance-velocity matrix where, for
each signal, non-zero velocity components are searched by
estimating Doppler shift content in the reverberant signal [12].

While some solutions have been designed for tracking either
fast or slow targets, none have been proposed for the joint
problem. This problem is especially important since, in the
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case of underwater target detection, both types of targets may
exist simultaneously. In particular, it may be challenging to
distinguish between slow mobile target and stationary reflec-
tors such as rocks or anchors. Considering this challenge, in
this paper we propose a track-before-detect approach to find,
track, and estimate the size of a single submerged target in the
presence of strong clutter and stationary reflectors. For this
purpose, we use a combination of a constraint expectation-
maximization (EM) algorithm and a constraint Viterbi algo-
rithm that works on a time-distance (TD) matrix of received
reflections. The EM identifies stationary targets and discards
them, while the Viterbi algorithm tracks the mobile target’s
path. Detection is then determined by maximum likelihood.
Once a valid path is identified, we evaluate the target’s size
based on a statistical analysis of widths obtained from all of the
target’s reflections. Since, realistically, the deploying platform
may be small, we consider using only a single acoustic
transceiver. While we assume a mixture of distributions to
identify stationary targets, no motion model is imposed on
the mobile target. Thus, our method can handle any motion
pattern.

Our contribution is threefold:
1) A new blind track-before-detect approach that manages

both slow and fast-moving targets using only a single
transceiver;

2) A statistical approach to identify stationary targets from
a TD representation of the reflection pattern;

3) A compact method to evaluate target size.
We have examined the performance of our approach by means
of numerical simulations as well as eight sea experiments
in different environmental settings. Four of the experiments
involved the tracking of scuba divers, and the other four in-
volved the tracking of a shark, captured for ecological research
purposes as part of a permitted monitoring programme. The
simulation results showed tracking performance close to the
derived Cramér-Rao lower bound (CRLB). Moreover, com-
pared to ground truth, the results of all experiments showed
good performance in terms of tracking, detection, and size
estimation in the presence of high clutter, noise transients and
a low signal-to-clutter-ratio (SCR).

The remainder of this paper is organized as follows. In
Section II, we describe the state-of-the-art in acoustic target
tracking. Our system’s model and assumptions are described
in Section III. In Section IV, we describe our tracking and
target’s size estimation methodology. Performance is analyzed
in Section V for both the simulations (Section V-A and
sea experiments (Section V-B). Conclusions are drawn in
Section VI. A list of the major notations is provided in Table I.

II. RELATED WORK

Two main approaches exist for the detection of targets by
using acoustic emissions. The first is the transmission of pulses
with injected guard intervals to suppress clutter. The target
is then found by tracking it’s possible path after a given
number of acoustic signals are transmitted [13]. The second
approach is the continuous active SONAR (CAS), which
employs narrowband transmissions in multiple sub-carriers to

detect Doppler components [14]. While the latter approach
yields near real-time detection, it relies on the existence of a
strong Doppler shift, and may thus not fit our considered case
of slowly moving targets.

The main challenge in active underwater acoustic target
tracking is strong clutter. To form the TD matrix with a
reasonable SCR, the common approach is to accumulate
matched filter (MF) responses of the received reflections [15].
Alternatively, based on the expected distribution of noise,
locally optimum filters can replace the MF [16], to manage
detection in the presence of arbitrary noise and interference
[17]. In the presence of transient noise (produced by e.g., snap-
ping shrimps), the MF may be preceded by noise cancellation,
usually using median filters [18] or wavelet de-noising [19].
In all of the above schemes, a detection threshold is set by
the known or estimated characteristics of the ambient noise,
e.g., its variance. However, at sea, noise often varies rapidly
over time, and estimating noise levels and their statistics may
be challenging.

Once the TD matrix has been formed, a tracking procedure
can be employed. Solutions include blind signal detection and
tracking in non-Gaussian noise environments [20]; supervised
data association and classification of signal reflections [21];
and employing tracking filters, which is considered the most
common approach. A powerful approach for dealing with non-
Gaussian clutter can be found in [9], where the power spectral
density of the clutter is modeled as a mixture of Rayleigh
distributions, enabling derivation of detection scheme optimal
for the clutter. Alternatively, to manage non-Gaussian noise,
various noise density functions has been used [17] with an
application for magnetic resonance imaging (MRI) curve eval-
uation [22]. To deal with non-linearity of measurements, track-
ing can be achieved using variants of the extended Kalman
filter [10], that track radial range and velocity measurements
[23], [10]. In [24], solutions to variant tracking applications
are compared.

In cases of low SCR, detection is often preceded by a
track-before-detect approach [25]. This approach avoids false
detections which may exist when applying a detection thresh-
old determined by a mismatched clutter model or by sig-
nal’s fluctuations, and instead performs tracking by following
possible target reflection patterns in the TD image. Com-
mon track-before-detect schemes include maximum-likelihood
probabilistic data association (ML-PDA), particle filtering
(PF), dynamic programming tracking, and probabilistic multi-
hypothesis tracking (PMHT). The first approach applies a
sequential likelihood ratio test to the sequence of measured
track’s parameters [26], and has the ability to track very low
observable targets. Applications of ML-PDA for real bistatic
and multistatic SONAR data are demonstrated in [27] and [28],
respectively. The second and third approaches are based on a
numerical representation of the probability density function
(PDF) of the observations, while the forth scheme uses a
parametric representation of the target’s PDF to dramatically
reduce the computational cost (e.g., [29]). PMHT was first pre-
sented in [29], to preform tracking over successive time-frames
of the SONAR image by separating the superposition of target
and clutter components using EM estimation. An extension of
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TABLE I. List of major notations

Notation Explanation
Nsig Number of emitted signals
K Number of samples corresponding to the reverberation delay spread
τ1 Lower bound of the number of samples allowed to represent reflection from a target
τ2 Upper bound of the number of samples corresponding to the drifting distance of the deploying platform

M and d The [Nsig ×K] time-distance matrix and its elements d
w, w̄(i), and ŵ Actual size of the target, its estimate from the ith emission, and its final estimation (in samples)

ϕ Threshold for detection decision
δm and ωm Prior and distribution parameters of the mth class
λi and Γi The ith column of M and its classifier
t and t̂ The time-distance track of the target and its estimate
ρw and ρt Size error and tracking error measures
Tmeasure Measurement time

this approach is given in [30] to combine the histogram of the
intensity data. Performance of these algorithms for various
applications including SONAR were studied in [25], [24],
and demonstration over a towed array SONAR is presented
in [31]. To improve performance in cases of low SCR, [32]
offered to use a Poisson mixture model that handles fluctuation
in the TD matrix. A comparison between track-before-detect
approaches can be found in [33], [25]. The former concludes
that PMHT has an advantage over ML-PDA in scenarios where
there are two close targets with similar motion dynamics.
The work in [25] compared between dynamic programming,
ML-PDA, PF, and histogram probabilistic multi-hypothesis
tracker (H-PMHT), and concluded that the latter method is
best in terms of computational cost and position accuracy.
However, H-PMHT fails to track fast-moving targets. An
analytic trackability framework which aim to determine the
clutter/interfering conditions in which tracking is feasible was
developed by Schoenecker et al. in [34], [35], [36] for various
types of clutter. Extension to the case of two close-by targets
is given in [37].

The probabilistic multi hypothesis tracking uses an assumed
measurement model, which may be mismatched with actual
data. Instead, the PF tracking approach tries to learn this
probabilistic model. The scheme involves estimating the PDF
of the target’s reflections by statistically sampling the discrete
grid of the target’s state-space (e.g., the target’s bearing and
range). For a multi-target scenario, a demonstration of this
concept on active and passive SONAR is presented in [38]
and [11], respectively. Another tracking approach that avoids
imposing a measurement model is dynamic programming,
which applies the Bayesian tracking framework. Assuming the
target-related reflections follow a Markov process, tracking
is performed following a grid search. Application for target
detection in low SCR using an active SONAR is reported in
[13]. While complexity is polynomial, the search is performed
over the entire TD matrix, and thus computation costs is high.

The above approaches propose solutions applied for target
detection using active acoustics. We observe three main gaps
that limit the practicality of these methods: 1) Mismatches
between the assumed clutter model and the distribution of
reflections from detected targets. This mostly applies to fil-
tering approaches, which either assume or estimate the PDF
for clutter’s and target’s reflections, and thus are limited to
cases of static PDFs which, in practice, may change due to

the time-varying sea conditions. 2) Hard assumptions about
the motion pattern of the target. This is specifically correct
for the ML-PDA, filtering, and the model-based dynamic
programming tracking approaches, which rely on a simple
dynamic model, e.g., fixed velocity, to represent and track the
target. 3) Robustness to various target types. For example,
due to its assumed Markov model, dynamic programming
tracking do not manage well fluctuations in the strength of the
target’s reflections, and may loose the track completely in case
of reflections that sometimes disappear in clutter. Differently,
PMHT performs well when tracking slow moving targets but
have difficulties in tracking fast targets [25]. Moreover, to the
best of our knowledge, the available literature do not manage
the case of reflections from stationary targets such as rocks,
ship hulls, concrete poles, etc., that may be misidentified as
targets. In the following, we describe our track-before-detect
method that takes special care of these four factors, namely, the
mismatches of clutter model, assumption on the target motion,
robustness to various targets, and managing stationary targets.
We explore the performance of our method in both simulations
and in sea experiments with real targets. To the best of our
knowledge, ours is the first work to report results on real
submerged targets. We thus share our raw measurements for
further exploration in this field.

III. SYSTEM SETUP AND ASSUMPTIONS

Our aim is to design a low-complexity, reliable and au-
tonomous tracking system that is robust in the marine en-
vironment. Our setup includes a single acoustic transceiver
deployed from an anchored or slowly drifting platform such
as a buoy or boat. The transceiver emits a sequence of
N sig acoustic signals of duration T sig [s], and records the
reflections with an assumed negligible transmission/reception
switch delay. The cycle lasts for N sig · T sig [s], after which
target tracking is performed. The signals are emitted with
guard intervals that correspond to the projector’s detection
range.

During the observation time, N sig · T sig, the TD matrix
may or may not include target-related reflections. We consider
a moving object that can be slow or fast-moving (here, we
demonstrate this for a scuba diver and a shark, respectively).
The target moves along a smooth but unknown path, and its
position relative to the transceiver is unknown. The target’s
shape is also unknown, and hence the reflection pattern cannot
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Fig. 1: Example of a TD matrix M containing reflections
from stationary targets. Ship hull at distances 4 [m] and 10
[m], and an anchor at distance 20 [m]. Normalized matched
filter outputs below 0.5 are neglected to emphasize reflections
from stationary targets.

be compared with a template reflection. No prior knowledge
is assumed regarding the sea bathymetry and betatherm 1.

Our solution fits the case of a single mobile target, which
can be either slow or fast-moving. In our solution, we assume
a rough upper bound for the target’s maximum speed, Vmax.
We also assume a lower bound τ1 [samples], such that the
minimum target’s size is τ1c/Fs, where Fs [Hz] is the sam-
pling frequency. This lower bound is used to smooth the TD
matrix and thus mitigate clutter which, in turn, is modelled to
be i.i.d. random in time and space. For a relatively low carrier
frequency of 12 kHz, our results showed tolerance to the
choice of the upper bound of the target size. We also assume an
upper bound for the drifting distance of the deploying platform
with a corresponding number of samples, τ2 [samples], around
a reference location during the measurement period N sig ·T sig.
This bound is required to compensate for the movement of the
platform, which can be obtained from it’s GPS log or from
the expected magnitude of the water current. We make the
assumption that τ2 is greater than τ1, and in the following τ2
as an upper bound for the target’s size.

IV. DETECTING A SUBMERGED MOBILE TARGET

In the absence of prior knowledge about the target’s texture,
the system cannot assume that the target possesses distinctive
characteristics. Yet, the fact that the desired target is mobile
offers some opportunities for detection by utilizing the stability
of its reflections. In particular, our approach is based on
analyzing the TD reflection matrix, created by the stacking of
match filter outputs for consecutive reflections. An example of
such a matrix is shown in Fig. 1. The matrix is processed to
distinguish between static reflectors like rocks or anchors (type
I); reflections from the sea boundaries or volume scatterers
(type II); and reflections from other mobile targets (type
III). The key idea behind our tracking method is that, since

1In our results, we use the sound speed, c [m/s], but only for visual
inspection and not for tracking or size estimation.

Fig. 2: Illustration of our track-before-detect procedure.

reflections from targets are stable, in the TD domain, only
reflections of type III are both stable and non-stationary in
distance. That is, in the TD domain, a valid target will form a
continuous, but curved, line. The width of this line corresponds
to the size of the reflecting object.

Referring to the illustration in Fig. 2, we start by creating the
TD matrix from a sequence of emitted wideband signals. Next,
we filter the matrix to remove reflections from stationary tar-
gets by analyzing the statistical distribution of each reflection
instance. The clustering is performed by estimating the poste-
rior of each reflection and jointly clustering the columns of the
TD matrix. Next, we execute the Viterbi algorithm [39] over
the filtering TD matrix to track remaining reflections which
have a stable path. Since we already eliminated reflections
from stationary targets, the established path is considered to
represent a mobile target. Detection is then made according to
maximum-likelihood criteria over the subject path. Finally, the
size of the mobile target is estimated according to the width of
valid reflections along the tracked path. Note that our method
avoids making assumptions on the motion of the target, nor
does it classify it as slow or fast-moving. Rather, the estimated
path may belong to either target type.

A. Path Tracking

As a first step, we create the TD matrix, M , whose ith row
is comprised of the reflection pattern for the signal transmitted
at time index i. Let s be a baseband transmitted signal, h(i),
be a reverberant channel impulse response, and r(i) be a
received reverberant signal. Assuming s is a wideband signal
and neglecting the Doppler shift effect as well as ambient
noise, the ith row of M , i.e., the convolution between s and
h(i), is [40]

s ∗ r(i) ≈ s ∗ s ∗ h(i) ≈ I ∗ h(i) = h(i) , (1)

where I is the Kronecker delta function. Considering (1), we
use a MF to evaluate the impulse response for the reverberant
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signal that is reflected back from the channel.
To mitigate clutter, we threshold the MF output so that

element M(i, j) is set to zero if M(i, j) < Th. While most
approaches use a parametric detector, i.e., one that requires
parameter estimation for the noise (and sometimes also signal)
distribution, in our case, this approach may lead to a high
false negative rate due to the time-varying reverberant sea
environment. Hence, to set Th, we use a non-parametric
approach. That is, avoiding the need to estimate the noise
distribution, we use the normalized matched filter

NMF(i) =
sr(i)T√

ssT · r(i)r(i)T
, (2)

and set Th by [41]

Pfa = 1−B
(

Th,
1

2
,
N − 1

2

)
, (3)

where Pfa is the desired false alarm rate, N is the time-
bandwidth product of s, and

B(a, b, z) =

a∫
0

nb−1(1− n)z−1dn

is the (tabulated) regularized incomplete beta function. That is,
given a desired false alarm probability and N characteristic,
we calculate Th numerically by (3). The NMF (2) for the ith
transmitted signal operates on a reflected buffer r of duration
K, where K is set by the assumed detection range, and both
r and s are baseband shifted and downsampled. Repeating
this operation for N sig signals, we obtain a

[
N sig ×K

]
TD

matrix M .
Observing M as a timely sequence of N sig reflection

observations, we detect the mobile submerged target via a
track-before-detect approach. Specifically, we aim to find a
sequence of consecutive reflections in the distance domain of
high likelihood to originate from a target. Here, we do not
assume knowledge about the target’s motion pattern, but rather
that it moves in an organized fashion with a bounded speed,
Vmax. Formally, for a target observed in time instance i at
distance k and in time instance i + 1 at distance j, i.e., by
M(i, k) and M(i+ 1, j), respectively, we assume

|j − k| ≤ V max ·∆T , (4)

where ∆T is the time elapsed between two consecutive signal
transmissions or rows of M . Hence, a valid target path should
reflect a state change by no more than V max ·∆T across the
field of observations 0, . . . ,K − 1.

Before detecting the target, we run an initial step to reduce
the clutter in M . For this purpose, we observe that a valid
target-related reflection is one that corresponds to a non-unity
target size. That is, we expect valid reflections to have some
width of unknown size w, such that for a target identified at the
ith row of M , there exist elements {M(i, j), . . . ,M(i, j+w−
1)} that correspond to a target centred around column j+w/2.
We also note that, while samples associated with reflections
from the target are dependent or even non-stochastic, clutter-
based reflection samples are i.i.d. Hence, the width of the
reflection allows us to differentiate between valid targets’

reflections and clutter reflections. Still, in the case of a small
target or in the case of emitted acoustic signals of low carrier
frequency, the unknown value w may be small. Thus, in an
attempt to avoid making hard decisions, we smooth M . To
this end, we use a median filter of length τ1.

To find the target’s path, we use the Viterbi algorithm for
the Hidden Markov Model [42]. In the context of a Hidden
Markov Model, the Viterbi algorithm finds the most probable
set of states within a sequence of observations. Reflecting this
idea to our case, we identify the columns of the TD matrix
(i.e., the distance samples) as states, and the rows of the TD
matrix (i.e., the time samples) as observations. Then, using
the Viterbi algorithm, we find the set of time-distance entries
in the TD matrix that most probably fits a mobile target. To
that end, we set the values of the TD matrix’s indexes (i.e.,
the normalized matched filter outputs) as emissions, and use
the pre-knowledge about the target’s maximum velocity for
the transition matrix between the different states. The former
is set since the output of the normalized matched filter can
serve as a reliability measure, while the latter indicates how
far a target can shift its location between two states in a given
time. We chose the Viterbi algorithm because it efficiently
optimizes a sequence of emission probabilities, while allowing
the use of preliminary knowledge by formulating transmission
constraints between the observed states. Moreover, since the
Viterbi algorithm is structured as a private case of the forward-
backward algorithm [39], it does not require initial conditions,
and is thus suitable for a track-before-detect approach. As
mentioned above, to set the transition probability from one
state to another, we limit transition jumps by ensuring that
transition probability from one state to another is zero unless
the maximal assumed velocity is met. This way, we make sure
the solution of the Viterbi algorithm follows a smooth line and
avoids non-physical rapid changes. Formally, we set a K×K
transition matrix, A, by

A(j, k) =

{
0 if |j − k| > Vmax ·∆T

1
V max·∆T

otherwise , (5)

such that, without pre-knowledge of the mobility model of the
target, uniform distribution is considered for allowed transi-
tions. The result is an estimated path t̂ that meets the criterion
in (4), whose element t̂(i) corresponds to the distance of the
target at time instance i. Using the Viterbi algorithm, path t̂
is chosen as the path that maximizes the set of normalized
MF coefficients - a set of N sig responses. The complexity is
O(N sig ·K2) [42]. The resulting path, t̂, can lock on a true
target path that lasts for the whole observation time, N sig ·T sig,
or for part of the TD matrix M . This is particularly important
since submerged targets may appear or disappear in the clutter,
depending on their position along the water column.

B. Detection Decision

Once the target path has been estimated, we make a detec-
tion decision via a maximum likelihood criterion for binary
hypothesis, with state ’1’ being a target path, and state ’0’
being a clutter path (non-target path). Given the accumulated
probability obtained by operating the Viterbi algorithm along
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the chosen path, P
(
t̂|H1

)
, and along other arbitrary paths,

P
(
t̂b|H0

)
, t̂b 6= t̂, we obtain the optimal hypothesis testing

strategy by computing the log-likelihood ratio (LLR) [43],

LLRb = β1 − β0
b , (6)

where b = 1, 2, . . . , B is a running index with B being a user’s
choice,

β1 = logP
(
t̂|H1

)
, (7a)

β0
b = logP

(
t̂b|H0

)
. (7b)

Assuming a single target, we make a decision of the
existence of a target by comparing the likelihood ratio (6)
to a threshold. As we show further on, the threshold is chosen
as a trade-off between the detection and false alarm rates for
a given SCR level. Formally, the decision procedure for the
hypothesis testing problem becomes

Ĥ =

{
H1 ∀b : LLRb > ϕ ,

H0 ∃b : LLRb ≤ ϕ ,
(8)

where−∞ < ϕ < 0 is a threshold that trades off between false
alarms and detection probabilities. To determine ϕ, we eval-
uate LLRb on-the-fly by taking paths b for which P

(
t̂b|H1

)
is not maximal. That is because, assuming a single mobile
target, it will be detected by the most probable Viterbi path,
whereas least probable paths will mark a path consisting of
clutter reflections. Since reflections from a target are expected
to occupy several columns in the TD matrix, for the log-
likelihood test we choose paths b that are positioned at least
τ2 samples from the maximal path t̂.

C. Ignoring Stationary Targets

One particular drawback of the Viterbi algorithm is that
it locks onto the best path in terms of maximum emission
probability; however, in contrast to a tracking filter, it does
not follow a specific motion model. The solution is therefore
vulnerable to strong reflections from stationary targets. These
can be reflections from objects like anchors, chains, pipes or
rocks, but also reflections from the deploying vessel itself.
With respect to reflections from the mobile target, all the above
are characterized by steady reflections, that is, for a stationary
reflector at distance j,

M(i1, j) ≈M(i2, j ± ε) , (9)

where i1 and i2 are two, not necessarily consecutive, obser-
vation time indexes, and ε is a bounded distance set by the
transceiver’s self-motion (e.g., its drifting motion). Note that
we allow also the target to sometimes stay in equal range to the
transceiver. This may occur when the target moves in a circle
around the transceiver or when it stops to e.g., change course.
However, the number of these cases is assumed small relative
to N sig. The result of reflections from a stationary target is a
seemingly straight line in the TD image representation of M .
An example of such an image is shown in Fig. 1. The image
was formed by stacking reflection patterns for a transmission
of a 10 kHz bandwidth linear frequency modulation signal
deployed at a 2 m depth from a vessel anchored in a water

depth of roughly 20 m. We observe two straight lines at
distances of roughly 4 m and 20 m, which correspond to
the direct and second reflections from the deploying vessel,
respectively. Note that the observed reflection lines are only
semi-straight lines. This is due to the boat’s drifting motion
around its anchor.

Since reflections from a stationary target are often strong,
the Viterbi algorithm may lock on these reflections and con-
sider it a valid target. Our solution to this problem is based
on observation (9). This observation states that values in the
columns of M related to stationary reflections have lower
variance and higher mean average compared to clutter- or
target-related columns. We therefore consider the problem of
detecting stationary targets as a clustering problem, for which
all entries in M are classified with two labels: either ’belong
to a stationary target’ or ’belong to clutter or a moving target’.
Utilizing the statistical relations between the two clusters, we
solve the problem using the EM algorithm [43].

1) Formalizing the EM Solution:
Recall that, due to the self-motion of the deploying vessel,
delays (or distances) of reflections from a stationary target will
likely slowly vary over time. Hence, instead of straight lines
in M , reflections from stationary targets would more likely
form curved lines. If the precise self-motion of the deploying
vessel is known, e.g., by using a differential GPS, the matrix
M can be corrected to compensate for this drift. Otherwise, as
an initial step in detecting reflections from stationary targets,
we form a modified matrix M̄ whose (i, j) entry is the
accumulation

M̄(i, j) = M(i, j) + . . .+M(i,min[j + τ2,K]) , (10)

where τ2 corresponds to the maximum drift of the deploying
vessel. This way, each column of M̄ takes into account all
measurements in a window of length τ2.

Our goal is to cluster each element in M̄ . Let m = 1
indicate a stationary target, and m = 2 indicates a clutter or a
moving target. Also, let M̄ i,j represent the (i, j) entry of the
TD matrix, and set ωm as the distribution parameters of the
mth class. Assuming the elements in M̄ are i.i.d., we employ
a mixture distribution model,

p
(
M̄ |Ω

)
=

2∑
m=1

∏
i,j

δmp
(
M̄ i,j |ωm

)
, (11)

where δm is the prior for class m ∈ {1, 2} such that

δ1 + δ2 = 1 , (12)

with Ω = {δ1, ω1, δ2, ω2} as the model’s parameter set,
and p

(
M̄ i,j |ωm

)
is the distribution of the single reflection

element, which we model as the Gaussian

p
(
M̄ i,j |ωm

)
=

1√
2πσ2

m

e
−|M̄i,j−µm|

2

2σ2m . (13)
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To cluster each element M̄ i,j , we utilize four observations:

µ1 > µ2 (14a)
σ1 < σ2 (14b)
δ1 < δ2 (14c)

Elements from the same column should be jointly clustered .
(14d)

Constraint (14a) results because the reflection from a sta-
tionary object is expected to be more powerful than the
reflection from clutter or a moving target. Constraint (14b)
results because reflections from a stationary target are expected
to remain stable. Constraint (14c) results because, across the
K spread of the reflections, we expect to find more clutter
than stationary targets. Finally, constraint (14d) results when
a column is associated either with a stationary target or with
clutter/a moving target.

To derive the EM algorithm, we formalize the log-
likelihood function of the elements in M̄ . Let λi =
{M̄(1, i), . . . , M̄(N sig, i)}, i = 1, . . . ,K denote the ith
column of M̄ . In addition, let Γi be the classifier for all the
elements in λi such that

Γi =

{
1 if column λi is classed as a stationary target
2 otherwise ,

(15)
and let Γ = {Γ1, . . . ,ΓK}. Based on (11), to label Γi, we
estimate the posterior,

P (Γi = m|λi,Ω) =
δmp (λi|ωm)

p (λi|Ω)
=

δm
∏
d∈λi

p (d|ωm)

2∑
n=1

δn
∏
d∈λi

p (d|ωn)

.

(16)
Note that (16) is somewhat different than the posterior for
the traditional Gaussian mixture model (e.g., in [43]). This
is because it encompasses the prior information, stating that
elements from the same column should be classed together.
Assuming a preliminary parameter set Ωx, the posterior ex-
pectation of the complete-data log-likelihood function is

L (Ω|Ωx) = E
[
logP

(
M̄ ,Γ|Ω

)
|M̄ ,Ωx

]
=

2∑
m=1

K∑
i=1

P (Γi = m|λi,Ωx) ·[
log δm +

∑
d∈λi

log p(d|ωm)

]
. (17)

We find Ω by maximizing the log-likelihood function (17).
2) Estimating the Prior:

Considering constraint (12), we use a Lagrange multiplier γ,
and obtain δm by solving

0 =
∂

∂δm

[
2∑

m=1

K∑
i=1

log (δm)P (Γi = m|λi,Ωx) +

γ

(
2∑

m=1

δxm

)]
=

K∑
i=1

P (δi = m|λi,Ωx)

δm
+ γ . (18)

Since
K∑
i=1

P (Γm = m|δi,Ωx) + γδm = 0, it follows that γ =

−K, and therefore,

δm =
1

K

K∑
i=1

P (Γi = m|λi,Ωx) . (19)

3) Estimating the distribution parameters:
To estimate ωm, we consider only the relevant parts of the
first term of (17),

‡(µm, σm) =

K∑
i=1

P (Γi = m|λi,Ωx) ·

∑
d∈λi

(
− log(2σm)− |d− µm|

2

2σ2
m

)
.(20)

Then, based on the constraints in (14), ωm is found by solving
the following optimization problem:

ωm = argmin
µn,σn

−
2∑

n=1

‡(µn, σn) (21a)

s.t. : µ1 > µ2 , (21b)
σ1 < σ2 , (21c)
δ1 < δ2 , (21d)

which is a convex optimization problem solved through inte-
rior point methods (cf. [44]).

4) EM Operation:
The EM algorithm is used prior to the Viterbi algorithm in
Section IV-A, and its purpose is only to identify stationary
targets. The EM is used directly on the TD matrix.To execute
the EM algorithm, we first form matrix M̄ in (10) and
then estimate Ω iteratively. Specifically, based on Ωx−1 from
iteration x− 1, we estimate the new δxm and ωxm through (19)
and (21), respectively. The iterations stop once parameters con-
verge or after a predefined number of iterations, X . Following
convergence, we calculate the posterior (16) and cluster each
column of the TD matrix by the class that maximized the
posterior, P

(
Γi = m|λi,ΩX

)
. Formally, the decision is made

by

Γ̂i =

{
1 if P

(
Γi = 1|λi,ΩX

)
> P

(
Γi = 2|λi,ΩX

)
2 otherwise .

(22)
Since the complexity of the interior point optimization is
polynomial and that of the EM algorithm is O

(
N sig ·K

)
,

the overall complexity of our method for finding stationary
targets is O

(
(N sig ·K +K2) ·X

)
(cf. [43]).

Finally, to prevent the Viterbi algorithm from locking onto
strong stationary reflections, we must remove those L columns
of M clustered as ’stationary targets’, i.e., for which Γ̂i = 1.
Still, due to the constraint in (5) that allows transition only
between a maximal number of columns, simply deleting these
columns would change the TD matrix and may affect the track-
ing solution. Hence, as an alternative, we keep the same matrix
size by replacing columns identified as stationary targets with
replicas of L randomly chosen columns identified as ’non-
stationary targets’. The result is a filtered matrix M̃ . Note
that by replacing columns we may distort the path of a mobile
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target crossing a column identified to include reflections from a
stationary target. Yet, since the target is assumed moving, this
intersection should occur only in a small number of rows of
matrix M . Then, since the Viterbi algorithm uses a sequence
of observations rather than single ones, the effect is limited.

To initialize Ω0, we cluster the elements of M̄ using the
K-means clustering algorithm [43]. Since K-means does not
support constraints that will ensure clustering elements of
the same column together, we perform clustering per column
of M̄ using the following heuristics. We start by separately
clustering the elements of each column λi, i = 1, . . . ,K
into two possible classes. Then, we make the column labelling
decision based on the majority vote, and statistically evaluate
the mean and variance of the inspected elements. Following
this operation, we average the measured mean and variance of
columns equally labelled, and consider these average values
for Ω0. Here, we order the classes based on relation (14b).
We note that in the cases where no column is labelled as a
stationary target, the fallback operation is to simply cluster all
of the elements of M̄ . We justify this decision by assuming
that in any deployment of an omni-directional transducer,
reflections from some stationary targets will always exist.

D. Estimating the Target’s Size

Once the target’s path, t̂, has been determined, we evaluate
its size. Besides the benefit of exploring the target’s size, e.g.,
for ecological purposes, the size of the target can help validate
detection. First, the number of samples for a valid target’s size
should be greater than τ1, and second, following the target’s
motion, the estimated size vector for all time instances should
be smooth.

Since the acoustic emissions to and from the target traverse
through the fading two-way channel transmitter-to-target and
target-to-receiver, and since the target’s reflection surface may
not have a constant acoustic target strength, reflections related
to the target may not be smooth. An example recorded in
a sea experiment for reflections related to a scuba diver is
shown in Fig. 3. The estimated position of the target appears
as a circle. Around the estimated position, strong fading is
observed. Moreover, due to the strong clutter, the structure of
the target’s reflection does not differ much from that of clutter-
related reflections. The task of defining the reflection’s width
is therefore a challenge.

Without pre-knowledge about the target’s reflection pattern,
we estimate its size statistically. Let vi be a vector of samples
corresponding to the reflected signal at time instance i such
that

vi =
[
M(i, t̂(i)− τ2), . . . ,M(i, t̂(i) + τ2)

]
. (23)

That is, vi encompasses the reflection samples around the
estimated target position, and recall we use τ2 as a rough upper
bound for the target’s size. An example of vi is given in Fig. 3.
The example shows a section of the normalized MF output
(blue line) that was identified as a reflection from a target. The
black circle marks the position found by the Viterbi algorithm,
and the black ’X’s mark the positions used for size estimation.
The example shows that the task of defining the target’s size
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Fig. 3: A reflection associated with a scuba diver. The curve
marked in red is the reflection’s envelope. The black circle
represents the estimated location. The black ’X’s represent the
positions chosen for the size estimation.

is challenging. Due to the non-homogeneous reflection plane
and the fading underwater acoustic channel, the reflection
pattern from the target is not homogeneous, and it is hard to
distinguish the clutter reflections from the target and determine
the latter’s width. Still, we consider the target’s reflection as
a low frequency component that modulates higher frequency
components of multipath reflections, fading, etc. Our solution
is then obtained by calculating the lower envelope (cf. [45]) of
vi, denoted by ṽi. We calculate the latter by the magnitude of
the analytic signal, which we obtain by the Hilbert transform.
The result is a smoothed version of vi, which ideally crosses
the original signal vi at the edges of the reflection peak. The
estimate of the target’s size, ŵi, can then be obtained by the
difference between the zero-crossing points of vi− ṽi around
the target’s position t̂(i), while tolerance is defined by the user.
Formally,

w̄(i) = l1 − l2 , (24a)

l1 = argmin
n
|vi(n)− ṽi(n)|, n > t̂(i) , (24b)

l2 = argmin
n
|vi(n)− ṽi(n)|, n < t̂(i) , (24c)

where (24b) and (29) hold element-wise absolute operations
for a given index n. The result is a vector, w̄, of size
estimations, w̄(i). This somewhat heuristic approach may fail
if the clutter is stronger than the target-related reflection, but
works well even for a low SCR level of 2 dB. Moreover, it
has the advantage of finding the target’s size with no prior
information, and is thus robust to the target types as well as
different sea conditions.

We now continue to fuse all of the found target’s sizes,
w̄, to estimate a scalar size for the target, ŵ. The intuition
is to set the size estimation, ŵ, as the average over w̄.
However, since the target moves during the data acquisition
and, as a fish would often do, may change its orientation
relative to the transceiver, e.g., from end-fire to broad-side,
an average would not capture the true size of the target. For
this reason, we estimate ŵ as a maximum over the set of size
estimations. As opposed to the minimum value which may
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capture the target when it faced the receiver by its end-fire,
only the maximum value may hold realistic evaluation about
the size of the target. In other words, by taking the maximum
value we better approach the true size estimation, which
corresponds to the case when the target faces the transceiver
in its broad-side. Further, due to our rather heuristic approach
of size estimation, some elements of w̄ are non-valid and
may form outliers. Hence, before estimating ŵ, we identify
time instances, î1, î2, . . ., during which tracking is assumed
valid, and take a sample sequence w̄(̂i1), w̄(̂i2), . . . with the
corresponding indexes. Considering (8), a time instance i is
determined valid if

P
(
t̂(i)|H1

)
> ϕ . (25)

The target’s size is then obtained by

ŵ = max
(
w̄(̂i1), w̄(̂i2), . . .

)
, (26)

to yield a single scalar value.

E. Algorithm Summary & Discussion

Algorithm 1 Pseudo-Code for our tracking algorithm.

1: Perform NMF (2), and stack NMF responses to form M
2: Filter clutter using the threshold in (3)
3: Smooth M via median filter of window size τ1
4: Initialize Ω0 using K-means
5: for x := 1 to X (or convergence) do
6: Calculate the log-likelihood (17)
7: Estimate δm (19)
8: Estimate ωm (21)
9: Estimate the posterior (16)

10: end for
11: Estimate the posterior P

(
Γi = m|λi,ΩX

)
12: if P

(
Γi = 1|λi,ΩX

)
> P

(
Γi = 2|λi,ΩX

)
then

13: Γi = 1
14: else
15: Γi = 2
16: end if
17: Remove all columns for which Γi = 1 to construct the

filtered matrix M̃
18: Contract transition matrix A based on (5)
19: Run Viterbi algorithm on the filtered matrix M̃ and obtain

track t̂
20: Validate detection by (8)
21: for i := 1 to N sig do
22: Compare vi from (23) with ṽi
23: Estimate target’s time varying width w̄ by (24)
24: end for
25: Filter vector w̄ to obtain the target’s size estimate ŵ by

(26)

We now summarize the operation of our detection algo-
rithm. Referring to the pseudo-code in Algorithm 1, we start
by forming the TD matrix M (lines 1-2). Next, we smooth the
signal (line 3), and initialize Ω0 (line 4). The EM operation
is performed iteratively (lines 5-11) by calculating the log-
likelihood (line 6), and deriving the prior (line 7), distribution

parameters (line 8) and posterior (line 11). The clustering of
stationary targets is then performed (lines 12-16), followed by
the construction of the filtered matrix M̃ (line 17). Then, the
Viterbi algorithm is activated to find the target’s path (lines 18-
19), and a detection decision is obtained (line 25). Finally, the
reflection size, ŵ, is estimated by comparing vi with its lower
envelope signal, ṽi (lines 21-24) and filtering the resulting
vector of peak widths w̄ (line 25).

V. PERFORMANCE EVALUATION

We now explore the performance of our track-before-detect
approach in both numerical simulations and in multiple sea
experiments. Simulations results are compared to the Cramér-
Rao lower bound, while performance in sea experiments is
compared to the ground truth of the target’s location. We
also provide results for a baseline algorithm that performs
tracking using an unconstraint Viterbi algorithm. That is, a
tracking solution that does not consider the limitations in (5)
but allows the path to freely propagate between states. For
both the simulation and sea experiments, we use Fs = 10
[kHz] (after baseband conversion) and c = 1530 [m/s].

A. Simulations

1) Simulation Model:
Since our detection method focuses on the analysis of the
TD matrix M , in our simulations we avoid preparing a full
simulation scenario with simulated acoustic signals. Instead,
relying on our eight sea experiments to analyze performance
in realistic environments, we simulate M directly. We start
with a [N sig × K] matrix M clutter composed of i.i.d. zero
mean Gaussian distributed samples of variance σ2

clutter.
We consider reflection of time-varying energy, etarget, from

a single target. We model the target to move with fixed velocity
and an i.i.d. white Gaussian acceleration (but, recall, both
the structure and parameters of the motion are considered
unknown to the tracking algorithm), such that

α(i) = [t(i), v(i), v(i− 1)] , (27a)
α(i) = Bα(i− 1) +Nnα(i) . (27b)

where t(0) is an initial location uniformly randomized to
be 1, . . . ,K − 1, v(i) is the target’s speed at time instance
i uniformly randomized between

[
−vMax, vMax

]
, nα(i) =[

nt(i), nv(i), nv(i−1)
]

is a zero-mean Gaussian vector with
covariance matrix Rmodel, and the advance and noise matrices
are

B =

 1 ∆T 0
0 1 0
0 0 1

 , N =

 ∆2
T

2 0 0
∆T 0 0
∆T 0 0

 ,

respectively, and ∆T is the time resolution between each
signal emission. The target’s size, w, is set uniformly at
random between 0.1 [m] and τ1c/Fs, and the target is injected
into M clutter as a Gaussian window of size w, centred
around locations t. This window simulates the appearance
of a target’s reflection at the output of the MF. To simulate
stationary targets, we consider a uniformly random number
F ∈ [1, 5] of stationary targets, each of uniformly randomly
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Fig. 4: ROC curves. Numbers on the contour lines indicate the SCR level in [dB]. Different pairs of false alarm-detection rate
are obtained by changing the threshold in (8).

set size astationary between 0.1 [m] and τ1c/Fs and time-
varying energy estationary, at uniformly distributed distances
tfix
f (0) ∈ {1, . . . ,K}, f = 1, . . . , F . To simulate a drifting

motion, we use

tfix
f (i) = tfix

f (i− 1) + nfix , (28a)

s.t. : |tfix
f (0)− tfix

f (i)| < τ2 , (28b)

i.e., the maximum drifting motion assumed is maintained,
where nfix is a zero mean i.i.d. Gaussian noise of variance
σ2

fix.
The reflected time-varying energies, etarget and estationary

of the target and the stationary reflectors, respectively, are
determined by a desired simulated SCR. We consider two
definitions for the SCR: one for the mobile target, ρtarget,
and one for the stationary reflectors, ρstationary. These are
calculated by

ρtarget = E

 Ketarget(i)
K∑
k=1

M clutter(i, k)

 , (29a)

ρstationary = E

 Kestationary(i)
K∑
k=1

M clutter(i, k)

 . (29b)

A Monte-Carlo set of 10,000 simulations is considered. In
each simulation, we fix the SCR values, ρtarget and ρstationary,
the clutter level σ2

clutter, the width w, σfix, and the maximal ab-
solute speed vmax, and randomize t(0), v(i), i = 1, . . . , N sig,
nα, F , astationary, and nfix. In all cases, we considered N sig =
100 signal emissions, which related to a measurment time of
Tmeasure = 50 [s]. For both stationary targets/reflectors and
mobile targets, results are measured in terms of the detection
rate and false detection, Pd and PFa, respectively. We also
analyze results in terms of the width estimation error rate, ρw,

and in terms of the track estimation error rate, ρt, defined as

ρw =
|ŵ − w|
w

, (30a)

ρt =

∑
n

(
t̂(n)− t(n)

)
∑
n
t(n)

, (30b)

where t̂(n) and t(n) are the nth element of t̂ and t, respec-
tively, and ρt is a time rate related to the measurement time,
Tmeasure.

While many track-before-detect benchmarks exist, an initial
study showed that none of these can manage the strong
stationary targets. Instead, we compare our simulation results
with the CRLB. The derivations for the CRLB are given in
Appendix A.

2) Simulation Analysis:
We start by analyzing the capability of our approach to
detect stationary targets. Fig. 4 shows the receiver operating
characteristic (ROC) for the detection of stationary targets
(Fig. 4a), and for the detection of mobile targets (Fig. 4b).
The figures show the probability of detection (y-axis) vs. the
probability of false alarm for different SCR levels, ρstationary

and ρtarget from (29a) for stationary targets and from (29b)
for mobile targets, respectively. The latter being represented
by the different contour lines. Each contour line is obtained
by changing the set detection threshold, ϕ from (8) to obtain
different detection performances. Then, threshold ϕ is set as
a tradeoff between the detection and false alarm performance
from the ROC for a certain SCR level. To form Fig. 4a, we
consider detection as the identification of a stationary target
in-between the[

tfix(0)− astationary, tfix(0) + astationary
]

range, and a false detection as identification of such a target
outside this range. We observe a good trade-off between Pd

and Pfa starting from ρstationary = 5 [dB]. Above ρstationary >



12

0 20 40 60 80 100

e [%]

0

0.2

0.4

0.6

0.8

1

E
m

p
ir
ic

a
l 
P

ro
b

(
w

 <
 e

)

v
max

 = 0.1m/s

v
max

 = 0.6m/s

v
max

 = 1.1m/s

v
max

 = 1.6m/s

Fig. 5: Empirical cumulative distribution function (CDF) of ρw
from (30a). y-axis shows the probability of ρw being smaller
than e, and x-axis shows e [%]. Results obtained for ρtarget =
8 [dB].

4 5 6 7 8 9 10

SCR [dB]

0

5

10

15

20

t [
%

],
 R

e
la

ti
v
e

 t
o

 T
m

e
a
s
u
re

Constraint Viterbi

uncostraint Viterbi

CRLB

Fig. 6: Tracking error rate ρt as a function of the SCR.
Tmeasure = 50 [s]. vmax = 0.6 [m/s].

7 [dB], results show almost false-less detection with minimal
false alarms.

ROC results for the mobile target are shown in Fig. 4b.
Here, a false alarm is determined when no target exists, but the
detection rule in (8) determined H1. The ROC is determined
by changing the threshold level ϕ. A good trade-off is obtained
for low SCR of ρtarget = 6 [dB], and for SCR ρtarget = 8
[dB], only a few miss detections are observed.

Next, in Fig. 5, we explore the cumulative distribution func-
tion (CDF) of the size estimation error, ρw (30a), for different
values of the maximal speed, vmax. We test performance for
ρtarget = 8 [dB], and for targets of maximal size w < 1 [m].
As we change vmax, we observe stability in the results for
vmax ≥ 0.6 [m/s]. This is because, below a certain maximal
speed, for some time instances, the target may be mistaken
to be stationary. Still, for all values explored, we observe that
in most cases, the error is less than 50%. When the target is
moving at maximal speed vmax ≥ 0.6 [m/s], the error in most
cases is below 10%, which corresponds to an absolute size
estimation error of 0.1 [m].

In our last simulation analysis, we explore the average

tracking error rate, ρt (30b). Results in Fig. 6 show the
mean and 90% confidence interval for ρt as a function of
the SCR ρtarget and for vmax = 0.6 [m/s]. Compared to the
performance of the no-constraint Viterbi algorithm, we observe
that the constraint solution performs much better, with a gain
spanning from roughly 0.6% at the high SCR levels and more
than 10% at the lower ones. This is because setting limitations
over the path, the Viterbi algorithm helps mostly when the
clutter is as strong as the reflection. Results are also compared
with the CRLB (36). For a low SCR of 6 [dB], we observe
a small error of less than 2% for the estimated track. Results
are also extremely close to the CRLB. The small spread of the
confidence interval shows that this result is stable throughout
the simulations.

B. Sea Trials

1) Experiment Setup:
To properly evaluate the performance of our tracking algorithm
in a realistic environment, we performed eight sea experi-
ments. Seven experiments were performed in the Mediter-
ranean Sea (MS), and one experiment was performed in the
Red Sea (RD). Four experiments included tracking scuba
divers (with closed and open circuit systems) and four ex-
periments tracked a sandbar shark (Carcharhinus plumbeus).
The details for each of the experiments are summarized in
Table II, and bathymetric maps of the explored areas of all
experiments but D1 (whom we couldn’t obtain the data) are
shown in Fig. 7. A variety of sea environments were explored.
Experiments D1 and D2 where conducted in open water with
a sandy bottom; Experiments D3 and D4 where conducted in
an open water with a reef environment with a rocky bottom
and shallow water; and Experiments S1-S4 where conducted
in a sheltered harbour environment with a sandy bottom and
shallow water.

To track scuba divers, we deployed a single acoustic trans-
ducer from a vessel (experiments D2 and D3) and from a
buoy (experiments D1 and D4). The position of the deploying
platform was recorded via a GPS receiver, while the position of
the scuba diver was measured by letting the scuba divers tow
a surface buoy with a GPS receiver. In all experiments D1-4,
the scuba divers performed a random motion, starting from the
deploying vessel. To test the system’s performance for shark
tracking, we caught a 1.8 m sandbar shark using regular fishing
gear 2. See image from this experiment in Fig. 10. We then
tracked the shark from three directions, while it was connected
to the fishing buoy, which had a GPS receiver, and upon its
release. We note that since sharks do not possess a swimming
bladder, their acoustic target strength is low, and thus the SCR
is low. The operations for shark tracking took place in Hadera
harbour, Israel, next to a power plant facility, where the sharks
gather seasonally.

The reflection level (RL) follows the expression,

RL = SL− 2TL + TS , (31)

2The fishing of sharks was performed under the approval and supervision of
the Israeli Nature and Parks Authority. After tagging, all sharks were released
with no harm caused.
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TABLE II. Details of the sea experiments.

Exp.
Tag Location Date Sea

State Target Type Water
Depth

Transducer
Depth

Target
Depth

Target Max.
Distance

Target
Max.
Speed

D1 MS; Achziv Apr. 17 1 One diver 15 [m] 5 [m] (buoy) 10 [m] 180 [m] 0.5 [m/s]

D2 RS; Eilat Mar. 18 0 Two divers
(closed circuits) 18 [m] 10 [m]

(buoy) 10 [m] 200 [m] 0.8 [m/s]

D3 MS; Hedera Apr. 18 1 One diver 20 [m] 2 [m] (boat) 10 [m] 350 [m] 1 [m/s]
D4 MS; Naharia Oct. 17 2 Two divers 120 [m] 10 [m] (boat) 10 [m] 250 [m] 0.3 [m/s]

S1 MD; Hadera Apr. 18 1 One shark (buoy
attached) 18 [m] 10 [m] (boat

anchored) 10 [m] 200 [m] 2 [m/s]

S2 MD; Hadera Apr. 18 1 One shark (buoy
attached) 18 [m] 10 [m] (boat

motoring) 10 [m] 200 [m] 2 [m/s]

S3 MD; Hadera Apr. 18 1 One shark (buoy
attached) 18 [m] 10 [m] (boat

drifting) 10 [m] 200 [m] 2 [m/s]

S4 MD; Hadera Apr. 18 1 One shark (free
swimming) 18 [m] 10 [m] (boat

drifting) 10 [m] 200 [m] 5 [m/s]

(a) Mediterranean Sea, Shallow water. Exp
D3, S1-S4

(b) Mediterranean Sea, Deep water. Exp D4. (c) Red Sea, shallow water. Exp D2

Fig. 7: Bathymetry maps of the explored areas.
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Fig. 8: Example of a detected stationary target (Exp D4).
Normalized matched filter outputs below 0.5 are neglected to
emphasize reflections from stationary targets.

where SL is the source level, TS is the target strength, and
TL is the transmission loss, which is counted twice due to
the round trip of the acoustic signal from source > to target
> to receiver. For transmission range η [m], the TL can be
simplified as

TL = 10k log10(η) + a · r/1000 , (32)

where a [dB/km] is the absorption loss, and k can be bounded
between a spherical propagation loss, k = 2, and a cylindrical
one, k = 1. To ensure the safety of the scuba divers and of
the captured shark, transmissions were made with a low SL of
165 [dB Re 1uPa@1m]. Considering a carrier frequency of 12
[kHz] that leads to a = 0.9 [dB/km], and given a TS of -20
[dB] [46] and a distance of 200 [m] from source to target, we
expect an RL of roughly 100 [dB Re 1uPa]. In all experiments,
the transmitted signals consisted of a sequence of N sig = 100
linear chirp signals of 10 ms duration and 7 [kHz] -17 [kHz]
frequency band. The signals were spaced by a guard interval
of 0.7 s considering a detection range of roughly 700 [m].
The signals were transmitted from an EvoLogics S2C R 7/17
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software defined modem that was used as an analog front end,
and received by a Cetacean uRadar II self-recorder system.
The recording system was deployed next to the projector, and
both systems were omni-directional. Due to the nature of the
recorder, in all experiments, analysis was made off-line.

The experiments involved great effort and investment in
data collection, equipment, logistics, and the approval of the
relevant authorities. For reproducibility, we share the obtained
TD matrices from the eight experiments 3.

2) Experiment Results:

We start by showing an example for the detection of
stationary targets. Results in Fig. 8 show a zoom-in on the TD
matrix around the position of a stationary target observed in
experiment D4. Two dark dotted lines mark the area identified
by the algorithm to include a stationary target. We observe that
in-spite of reflections’ power and delay fluctuations, a good
match is obtained. We note that both when the scuba divers
used closed breathing systems (re-breathers) and open systems,
we could not detect them by their emitted noise. Moreover,
comparing the spectrum of the reflection patterns for both
system types, we could see no difference. We thus conclude
that the effect of bubbles exhaled from the scuba divers with
open circuits has no observable effect on the reflection pattern.

Results of scuba diver tracking and size estimation for
experiments D1-D4 are given in Fig. 9. The upper figure
shows the TD matrix; The middle figure shows the estimated
track; and the bottom figure shows the vector w̄ (24) and
the scalar estimate ŵ (26). Note that ŵ is obtained from the
maximum of all validated size estimation results. Hence, since
some outliers are detected, the obtained ŵ does not show the
maximum over w̄. Since only a single transceiver is used, all
TD matrices include a high clutter level, as well as strong
observed reflections from stationary targets. In Exp D1 and
Exp D2, the latter fits the location of the buoy’s chain; in Exp
D3, the fixed lines (i.e., reflections from stationary targets)
matches the position of nearby pier; and in Exp D4, the
locations match the boat’s anchor. In all but for Exp D4, we
observe that the SCR is very low and the scuba diver’s path
is hardly visible. Still, a close observation reveals accurate
path findings. This conclusion is supported by comparing the
estimated path to the GPS-based ground truth. The maximum
and average absolute error is reported in the middle figure for
each experiment.

Given the low SCR values, the results in Fig. 9 can confirm
the simulation results in Fig. 6, which, for SCR=6 [dB] show
an error of roughly 5%. Moreover, similar to the simulation
results, comparing performance to the baseline unconstraint
Viterbi algorithm, we observe that at low SCR levels setting
the constraints in (5) allows proper tracking. Analyzing the
size estimating results, we note that in experiments D1 and
D3 the scuba divers mostly swam from the boat and were
detected from the end-fire; while in experiments D2 and D4
the scuba divers changes their angle relative to the transceiver.
Moreover, since D2 and D4 involved two scuba divers, the

3Data can be downloaded from https://drive.google.com/drive/folders/
1WqooS8jXGuOSZcEb-59 LZRe0ACUJWjI?usp=sharing.

size of the reflecting surface changes over time, relative to the
distance between the scuba divers. As a result, we observe a
wider spread in size estimations for D2 and D4. Nevertheless,
considering an average length of a scuba diver of 1.8 [m], the
results of ŵ show only a small error (in D4, the captured size
is for the two scuba divers together). Since the scuba divers
in experiments D2 and D4 swam roughly 1 or 2 [m] apart, we
could not separate between them. This is also shown by the
size estimation results shown in Fig. 9.

Results for experiments S1-S4 are shown in Fig. 11. The
structure of the figure is similar to Fig. 9, except for Exp S4,
where no ground truth for the shark’s location was available.
In all cases, no visible path is observed in the TD matrices, and
the SCR was extremely low. Furthermore, results show strong
stationary targets in the first 20 m range. Still, in all cases,
detection was successful. The formed path shows higher errors
than the scuba diver experiment. We believe this is mostly due
to the long line of roughly 20 m that connected the shark to
the buoy that held the GPS receiver. Hence, in contrast to the
case of the scuba divers, here the location of the buoy did not
accurately represent the shark’s location. Yet, the low error-
to-distance rate allows us to argue that the observed path is
not random. We also observe that, due to the low SCR level,
the performance gain compared to the baseline unconstraint
Viterbi algorithm is higher. In all experiments, the estimated
target’s size was roughly 1.5 [m]. Comparing this length to
the measured total length of the shark (1.8 [m]), and noting
that, due to its low mass, the shark’s tail has a low acoustic
target strength, we argue for accurate size estimation.

Similar to our numerical simulations, in terms of target
detection and tracking, our experimental results showed ac-
curate tracking performance for both slow (scuba diver) and
fast (shark) mobile targets in different sea environments. In
terms of size estimation, since modelling the reflection width
is a difficult task, the results show occasional inaccuracies
sometimes twice the actual size. Still, both in the simulations
and experiments, we observe that the determined size value,
obtained as the maximum over the self-validated sequence
of size estimates, fits the ground truth results. We therefore
conclude that our tracking method is able to robustly track
mobile targets in a realistic sea environment composed of
stationary reflections and strong clutter.

VI. CONCLUSIONS

In this paper, we presented a low-complexity tracking
algorithm for submerged mobile targets in the presence of
strong clutter and stationary reflectors. The targets considered
are both slow-moving ones, like scuba divers, and fast-moving
such as marine predators. Our method is based on transmitting
a sequence of short wideband signals and forming a time-
distance (TD) matrix. To manage only mobile targets, our
algorithm first detects stationary targets by clustering the TD
matrix using a constraint EM procedure. Then, considering
reflections as states, we track the target using a constraint
Viterbi algorithm matched to some bounds (if known) about
the target’s motion pattern. Detection is then formed by
maximum likelihood. We also presented a heuristic approach

https://drive.google.com/drive/folders/1WqooS8jXGuOSZcEb-59_LZRe0ACUJWjI?usp=sharing
https://drive.google.com/drive/folders/1WqooS8jXGuOSZcEb-59_LZRe0ACUJWjI?usp=sharing
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Fig. 9: Results for diver detection: TD matrix after removal of reflections from stationary targets (upper row); Obtained path
(middle row); estimated width w̄, fixed black line shows ŵ (26) (bottom row). SCR levels are 6 [dB] (D1), 7 [dB] (D2 and
D3), 8 [dB] (D4). In all cases, signal-to-noise ratio was above 20 [dB]. SCR levels are listed on the caption of the subfigures.
Matrix elements are shown in units of normalized matched filter (NMF).

Fig. 10: Sandbar shark prior to release and acoustic sampling.

to estimate the size of targets, once tracked, by comparing
reflections with their envelope. We tested our algorithm in both
extensive simulations and in eight sea experiments of different
sea environmental settings and for different targets - including
scuba divers with open and closed circuits rebreathers and a
sandbar shark of low acoustic target strength. The results show

accurate tracking and detection, as well as fine-size estimation
in the presence of a very low signal-to-clutter ratio and in the
presence of multiple stationary reflectors. Further work will
extend this work for detection of multiple targets.
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APPENDIX

Since our tracking algorithm is a sequence of the EM
algorithm and the Viterbi algorithm, which are both unbiased
estimators [47], [48], we argue that also our scheme is un-
biased. Hence, we can derive the Cramér-Rao lower bound
(CRLB) for mobile target tracking to bound the performance
of our scheme. We consider the following measurement vector

y(i) = g
(
α(i)

)
+ nmeasure(i) , (33)

where g(·) represents any observation model one chooses for
the state vector, α, and nmeasure(i) is a measurement noise
with a covariance matrix Rmeasure.

Let S and Y be the vectors of states α(i) and y(i),
respectively. For any unbiased estimator, the CRLB gives the
lower bound on the covariance (cf. [49])

E

[(
Ŝ − S

)(
Ŝ − S

)T
]
≥ J−1 , (34)

where
J = E

[
− ∂2

∂2S
logP (S,Y )

]
(35)

is the inverse of the Fisher information matrix with elements
Ja,b, and P (·) denotes the probability density function. In [50],
it was shown that if only estimation α(i) in vector S is of
interest, (35) can be formulated recursively such that

J(i) = J1,i − JT
2,i(J(i− 1) + J3,i)

−1J2,i , (36)

where

J1,i = −E
[

∂2

∂2α(i)
logP (α(i)|α(i− 1))

]
−

E

[
∂2

∂2α(i)
logP (y(i)|α(i))

]
(37a)

J2,i = −E
[

∂2

∂α(i− 1)∂α(i)
logP (α(i)|α(i− 1))

]
(37b)

J3,i = −E
[

∂2

∂2α(i− 1)
logP (α(i)|α(i− 1))

]
. (37c)

Recall both nα(i) from (27) and nmeasure(i) from (33) are
modeled to be zero-mean Gaussians with corresponding co-
variance matrices Rmodel and Rmeasure, respectively. Observe
∂α(i)
∂α(i−1) = B from (27). Thus, introducing G(i) = ∂g(α(i))

∂α(i) ,
(37) becomes

J1,i =
(
NRmodelNT

)−1

+ E
[
G(i)T (Rmeasure)

−1
G(i)

]
(38a)

J2,i = BT
(
NRmodelNT

)−1

(38b)

J3,i = BT
(
NRmodelNT

)−1

B . (38c)

In our simulations we consider a direct measurement of the
speed through, e.g., Doppler shift estimation, such that G(i)
becomes a unity.
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