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A Factor-Graph Clustering Approach for Detection
of Underwater Acoustic Signals

Dror Kipnis and Roee Diamant, Member, IEEE,

Abstract—We address the challenge of detecting an arbitrary-
shaped underwater acoustic signal. Instead of setting a detection
threshold, which due to noise transients may result in a high
false alarm rate, our method classifies each measured sample as
either ’noise’ or ’signal’. Utilizing a-priori knowledge of only the
minimal duration of the signal, the decision is made using loopy
belief propagation over a factor graph. Numerical simulations
and sea experimental results show that our scheme achieves a
favorable trade-off between the recall and false alarm rates, and
noise robustness which far exceeds that of benchmark schemes.

Index Terms—Underwater acoustics, signal detection, factor
graphs, clustering, loopy belief propagation, sea experiment.

I. INTRODUCTION

Detection of underwater acoustic signals is the basis of
almost all undersea operations involving remote sensing. This
includes synchronization for underwater acoustic communi-
cation, active and passive remote sensing of objects through
underwater acoustics, and acoustic ranging for localization. In
all of these applications, the aim is to reliably detect the signal
in the presence of ambient noise, with minimal false alarm rate
(FAR). This is a challenging task since the ambient noise at
sea contains non-Gaussian elements and noise transients. In
this paper, we consider the case of passive detection when the
signal’s waveform modulation is unknown, and our goal is to
attain reliable detection in the presence of noise transients.

Without pre-knowledge of the signal’s waveform, detection
can be preformed using e.g., cyclo-stationary analysis to detect
periodic features in the received signal [1], or spectrogram
correlation, which requires the time-frequency representation
of the signal’s rather than its exact waveform [2]. Yet, both
alternatives assume some knowledge of the signal’s character-
istics, which, when mismatched, may yield a high false alarm
rate. Instead, the common practice is to employ a constant false
alarm rate (CFAR) system through e.g., an energy detector
[3], whose detection threshold is set to achieve a desired
false alarm rate for an assumed noise distribution. However,
energy detection is sensitive to impulsing transients e.g., from
snapping shrimps [4] such as in Fig. 1, and may induce false
alarms when the noise distribution changes rapidly [4],[5].

Considering the challenge of detection in a rapidly changing
signal-to-noise ratio (SNR), the minima controlled recursive
averaging (MCRA) method [6] employs an adaptive threshold,
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Figure 1: Top - Detection results of GCC and benchmark meth-
ods: energy detector (ED), belief propagation (BP), Viterbi al-
gorithm (VA), Baum-Welch (BW) and k-means (KM). Bottom
- received signal in the time domain. Results show that only
GCC detected the signal with no false alarms.

determined according to an exponential averaging of the time-
dependent estimated noise level. However, MCRA requires
the adjustment of multiple parameters, which might affect its
robustness to sea conditions and signal structure.

In this paper, we describe a new passive detection scheme
for underwater acoustic signals, referred to as graph calibra-
tion clustering (GCC). Our goal is to attain reliable detection
in the presence of noise transients. Assuming knowledge of
only the minimum duration of the desired signal, we represent
the probabilistic dependencies between sequential observations
through a graphical model. Instead of setting a threshold,
detection decision is made based on the credibility assigned to
each observation. In doing so, we do not assume any model
for the noise or signal statistics. Our contribution is twofold:

1) A new probabilistic clustering method for passive detec-
tion of underwater acoustic signals.

2) A detection method that utilizes a lower bound on
the signal’s duration to probabilistically reject noise
transients.

We test our method in numerical simulations and in sea
experiments, and show that it achieves a favorable trade-off
between the recall and false alarm rates.

The remainder of this paper is organized as follows: Section
II specifies our system’s model and assumptions. Our proposed
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GCC method is described in Section III. Simulation and sea
experimental results are presented in Sections IV and V,
respectively. Additinal technical issues are discussed in VI,
and Conclusions are drawn in Section VII.

II. SYSTEM MODEL AND ASSUMPTIONS

Our input is a sequence of observed time-domain samples
ei, i = 1 . . . N . The waveform modulation of the desired signal
is assumed to be unknown, but we set a lower bound, L, on
its duration. No assumption is made on the ambient noise or
the signal’s distribution. We consider a binary hypothesis test
for each sample i, such that,

ei =

{
n[i], H1

n[i] + s[i](u[i − τ] − u[i − τ − τs]), H2
(1)

where n[i] is a noise sample, s[i] is a signal sample, u[i] is the
step function, and τ is the time instance in which the signal
is received, τs > L is the duration of the signal. For accurate
detection, our goal is to correctly label each sample ei .

III. DESCRIPTION OF THE METHOD

A. Key Idea

The key observation behind our scheme is that, in contrast
to the observed noise samples, which are assumed to be
independent, the signal’s samples are actually statistically
dependent. We utilize this dependency, as well as the prior
knowledge of L, by formalizing the problem as a bipartite
factor graph, where samples correspond to variable nodes, and
the factors favor sequences of at least L variables. We then
iterate along the factor graph, and make detection decisions per
sample, based on the resulting beliefs. This setup resembles
the architecture of the low density parity check (LDPC)
coding scheme [7], where message nodes and check nodes
are analogue to variable nodes and factor nodes, respectively.
A legitimate codeword is a sequence of at least L variables,
rejecting shorter transients. The novelty in our approach is
therefore the utilization of local statistical dependency of the
signal’s samples over time scales larger than L, to reduce false
alarms which otherwise exists due to noise transients.

B. The Graphical Model

Our graphical model is illustrated in Fig. 2. Each sample ei
is connected to a variable node (also referred to as a hidden
node) xi that is in either state 1 (noise) or state 2 (signal). The
variable nodes xi are connected through factor nodes u j , which
form a Bethe cluster graph [8, ch.11]. The limit on the signal’s
duration L is depicted by a length parameter L, L = 2L + 1.
In our model, each factor node u j , L + 1 < j < N − L is
attached to nodes xi−L, xi−1, xi, xi+1 and xi+L , (for example, in
Fig. 2 we have N = 15 and L = 5). This graph architecture
is chosen because, if a sample is classified as a ’signal’ then,
depending on the sample’s position within the sequence, its
neighbors would also be classified as such.

The potential value φ of a factor node corresponds to the
probability of a legitimate sequence of states to occur. It is
chosen such that a value φ = 1 is assigned to a legitimate
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Figure 2: The graphical model for L = 5, N = 15: For example,
factor node u6 connects variable nodes x1, x5, x6, x7 and x11.

Table I: Values for which φ(xi−L, xi−1, xi, xi+1, xi+L) = 1. The
left column indicates the line entries in the full 32 rows table
describing the 5-connected factors.

line entry xi−L xi−1 xi xi+1 xi+L φ
1 1 1 1 1 1 1
2 1 1 1 1 2 1
4 1 1 1 2 2 1
8 1 1 2 2 2 1

16 1 2 2 2 2 1
17 2 1 1 1 1 1
25 2 2 1 1 1 1
29 2 2 2 1 1 1
31 2 2 2 2 1 1
32 2 2 2 2 2 1

sequence of states (i.e, all variables are at the same state, or a
single transition between states), otherwise φ = ε � 1. We list
legal variable node values’ combinations for which φ = 1 in
Table I. The rest of the table’s entries are marked with φ = ε .

C. Graph Calibration

To calibrate the graph in Fig. 2, we use the sum-product
loopy belief propagation (LBP) scheme [8, ch.11]. The process
starts by initializing the variable nodes xi according to a poste-
rior estimation p(xi |ei). Messages δxi→u j , δu j→xi , i, j = 1 . . . N
from xi to u j and vice versa, respectively, are initialized to 1.

Let K(xi, j) be the set of factor nodes neighboring to xi ,
excluding u j . For each variable node xi , messages to each of
its neighboring factor nodes u j are calculated by:

δxi→u j = pi,s
∏

k∈K(xi, j)
δuk→xi , (2)

where pi,s = p(xi = s |ei) is the posterior for xi to be s in
{1, 2}. For each factor node u j , message to its neighboring
variable node xi are calculated by:

δu j→xi = ψj(xK(u j,i))
∏

k∈K(u j,i)
δxk→u j , (3)

where xK(u j,i) is the set of variables neighboring to u j ex-
cluding xi , and ψj(xK(u j,i)) =

∑
xi φ j(xK(u j,i), xi) is the factor

marginalization of xi in φ j [8, ch.9].
The above procedure is repeated iteratively until conver-

gence of the messages. Then, beliefs B(xi, s) are calculated
for each variable node xi according to:



3

  

Energy Detection

Calculation of GMM parameters : w
1
=(m

1
,s

1
), w

2
=(m

2
,s

2
) 

 Posterior calculation: p(x|w
1
,w

2
,e)

Buffer of observations→e

initial beliefs→x

 message passing: d
x→u

Update beliefs

Beliefs 
converged

?

LBP - repeat for 
maximum Nitr

max
 

iterations

Initialization

YES NO

x
i
=max{B(x

i
I1), B(x

i
|2)}

 message passing: d
x→u

Output: x

Figure 3: Diagram of the GCC algorithm.

B(xi, s) = pi,s
∏
k

δuk→xi , (4)

Finally, xi = 1 if B(xi, 1) > B(xi, 2), otherwise xi = 2.

D. Initialization

The initialization of the variable nodes is based on the pos-
terior estimation, p(xi |ei). To this end, we assume a Gaussian
mixture model (GMM)

p(xi |ei) =
2∑

s=1
ksp(xi |ωs, ei) , (5)

where ks is the prior of class s, ωs = {µs, σs}, and µs and
σs are the mean and variance of the Gaussian p(xi |ωs, ei),
respectively. Then, xi are initialized by p(ei |1) = p(xi |ω1, ei)
and p(ei |2) = p(xi |ω2, ei).

To find ωs, s = 1, 2, we use a statistical test by pre-
clustering each sample ei . To achieve this, we use an energy
detector tuned to a high desired false alarm rate (FAR), such
that signals of low SNR are also detected. We calculate ω1
statistically for all samples ei not detected by the energy
detection, and vice versa for ω2. We note that this preliminary
energy detection is used only as a rough clustering, mainly to
reduce computational costs.

E. Complexity analysis

Fig. 3 shows a flow chart of GCC. Our protocol involves
message passing iterations from variable nodes to factor nodes
and vice versa. Let κ = 5 be the number of nodes attached to
each variable/factor. The complexity of messages from vari-
ables to the factors, δx→u (2) is κN , and the complexity of the
δu→x messages (3), which involve the factor marginalization,
is (κ + κ)N . Hence, the complexity of each message passing
iteration is κO(N), and the complexity of running the whole
algorithm for Nitr iterations is the linear term κO(NNitr ).

IV. NUMERICAL ANALYSIS

Our numerical analysis attempts to evaluate the performance
of our GCC detector in terms of the detection and false alarm
rates. Since GCC clusters the data, we measure detection
performance by the Recall,

Recall =
nD

n2tot
, (6)

where nD is the number of correctly detected samples with
s = 2, and n2tot is the ground-truth for state 2 (signal). FAR is
calculated on a sequence of noise, according to nF

Nnoise
, where

nF is the number of falsely detected samples, and Nnoise is
the total length of the noise sequence.

Since we have neither a-priori knowledge of the likelihood
of the hypotheses or their corresponding cost, we cannot
compare our method to Bayesian or minmax decision-making
[3, ch.3.2]. Instead, together with the simple energy detection,
we consider benchmark methods that do not depend on the
noise distribution. This includes the Viterbi algorithm (VA)
[9][10], the Baum-Welch (BW) [10], the belief propagation
(BP) method [11], and K-means clustering (KM) [12].

The specifications of the benchmark schemes are as follows:
For the energy detector (ED), we set the detection threshold
for a target FAR of 10−8, and the averaging window to be
2L + 1 as in GCC; for the VA, we perform detection by
clustering the received samples after convergence. We use the
prior estimation from the initial ED (see Section III-D) to set
the transition matrix T and emission matrix E according to:

T =
[

1 − 1/N 1/N
1/N 1 − 1/N

]
(7)

E =
[

p(xi = 1|ei = 1) p(xi = 2|ei = 1)
p(xi = 1|ei = 2) p(xi = 2|ei = 2)

]
(8)

The BW and the KM schemes are initialized by the initial
ED; In contrast, BP is a simple version of GCC, where no
factor graph is used and the dependencies form a causal
Markov chain [11, ch. 4.2]. For BP, we use E from (8) as
the conditional probability matrix Myx . We note that we were
unable to find a benchmark that utilizes the information on
the lower bound L. This is in addition to the trivial case
of requiring L consecutive detection decisions to declare
detection, which is by no means either efficient or optimal.

A. Simulation Setup

Detection performance is tested over 100 buffers, each
containing 4,800 samples of both noise and a synthesized sine
wave of length τs samples and of frequency 12kHz, sampled
at 48kHz. To examine the impact of the sea ambient noise, we
carry out simulations for both the Gaussian noise and the real
sea noise we recorded in a sea experiment in shallow water
of 10 m depth1. The length parameter of the GCC is L = 50.

Recall as a function of SNR is measured for τs = 480
samples. Since we measure performance per sample decision,
the statistics obtained is for 48,000 trials. Dependence of

1While there are models that treat ambient sea noise as α distribution [4],
we used real recorded noise to demonstrate the effectiveness of our algorithm.
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Figure 4: Recall for synthesized signals with Gaussian noise
(top) and recorded sea noise (bottom). L = 50. Results show
that the GCC achieves reasonable results compared to the
benchmarks, and is less affected by sea noise.

Recall on τs is evaluated for SNR=15dB and L = 50. FAR
is measured over 359 buffers, each containing 4,000 noise
samples, obtaining statistics for ∼1.4 million trials. Sensitivity
of the algorithm to L is explored by receiver operation char-
acteristic (ROC) curve, using L as a configuration parameter.

B. Simulation Results

Fig. 4 shows the recall measure for the various tested
methods vs. the SNR for both Gaussian noise and sea noise.
The results show that GCC achieves reasonable detection
performance compared to the benchmarks. GCC performance
is also the most robust for the two noise source cases, since
its performance are least affected by the noise distribution.

Fig. 5 shows the cumulative distribution function (CDF)
of the FAR. Results show that, except for KM, whose per-
formance is generally poor, the FAR of all methods highly
increases in the presence of sea noise. This is mostly due to
the noise transients as seen in Fig. 1. Still, we observe that
GCC performance is much less affected by the sea noise, and
that its FAR is much better than that of the benchmarks.

Fig. 6 shows the dependence of Recall on τs , evaluated for
both Gaussian and sea noise, for SNR=15dB. It appears that
very short signals with τs < 2L are effectively rejected, while
robust detection is achieved for τs > 8L (working point for
Fig. 4 is τs/L = 9.6). These results suggests that the GCC
should be applied to signals which are at least an order of
magnitude longer than the noise transients we wish to reject.

The ROC curve of Fig. 7 explores trade-off between recall
and FAR for sea noise 2, obtained for various values of L while
τs = 480. It shows that performance increase when L becomes
larger, and optimum occurs for 8 < L < 30. Degradation of
recall for larger values of L is due to the larger factor graph,
which rejects detections more effectively.

2The ROC curve is only for sea noise since the FAR for Gaussian noise is
too low for our simulation
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Figure 5: FAR CDF for Gaussian noise (top), and recorded
sea noise (bottom). L = 50.
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V. SEA EXPERIMENT

We now discuss the results we obtained in a sea experiment.
The experiment was carried out in Aug 2017, in the Achziv
nature reserve in Northern Israel, at a water depth of 10 m.
This reserve hosts a population of lobsters and snapping
shrimps that emit strong acoustic transients. The experimental
setup is illustrated in Fig. 8. We transmitted a sequence of
10 ms chirp-modulated signals at frequencies between 3 kHz
and 17 kHz. To transmit the signals, we used the Evologics
S2CR 7/17 software-defined acoustic modem, deployed from a
boat to a depth of 5 m. The receiver was based on the µRadar-
mkII acoustic recorder, deployed at a 5 m depth from a buoy
located about 500 m away from the boat. Processing was made
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Table II: Experimental results: Top - FAR. Bottom - recall.
Results show that the GCC’s FAR is much lower than that of
the benchmark, and that its recall is similar.

SNR GCC ED BP VA BW KM

FAR(%) N/A 0.24 2.57 2.88 1.05 6.7 5.08

10dB 0.64 0.69 0.57 0.66 0.78 0.65
Recall 15dB 0.84 0.83 0.72 0.80 0.89 0.64

20dB 0.94 0.87 0.80 0.89 0.93 0.64

off-line, using L=50. An example of detection results on a
single buffer is shown in Fig. 1. A matched filter analysis of the
received signal showed a delay spread of approx. 1.12ms with
5 significant non-direct arrival paths. Yet, since all detection
schemes do not assume knowledge of the signal, all replicas
are detected, and multipath have no affect on performance.

The experiment results are summarized in Table II. FAR
is defined as the number of false negative detections per
4000 samples, and is averaged over 359 buffers. To evaluate
the recall for different SNR values, during the analysis we
added recorded ambient sea noise to the obtained buffers. The
results show that the GCC’s FAR is significantly lower than
that of the benchmark methods, while for reasonable SNR
of above 10dB, the GCC’s recall is at the same range as
the leading benchmarks. These results demonstrate that GCC
achieves a favorable trade-off between detection and false-
alarm performance. It can be seen that our GCC method is
the only one to detect the signal without false alarms.

VI. DISCUSSION

Here we discuss the technical details of the LBP implemen-
tation that is a major part of GCC. The implementation we use
is based on the simultaneous propagation of state beliefs. The
LBP stops when the changes in transferred beliefs are smaller
than a pre-defined threshold (0.001), or if convergence is not
achieved after γ=Nmax

itr iterations (200 in our implementation).
Monitoring the number of iterations required for convergence
reveals that, as illustrated in Fig. 9, convergence is achieved
in most of the cases. For the other few cases, detailed analysis
of the results showed that the length of the signal relative to
L affects the convergence of the algorithm. We also observed
that often beliefs corresponding to the majority of a buffer
converge while beliefs of relatively few nodes, especially those
corresponding to the signal edges, converge slower. Yet, this
phenomena has no effect over the detection performance.
Future research would focus on identifying redundant links
and reduce the complexity load, e.g using informed message
scheduling and residual belief propagation [8, ch. 11].
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Figure 9: CDF of the number of iterations required for
convergence, nitr . Data are 4800 samples long buffers of Gaus-
sian/sea noise with synthesized transmission signals of various
lengths. Statistics were obtained over 2200 runs per noise
type. Stopping criteria at γ=200 iterations without convergence
allows conversion of 90% of the buffers in these simulations.

VII. CONCLUSION

In this work, we proposed a probabilistic graphical model
for detecting a non-stationary arbitrary-shaped underwater
acoustic signal of assumed minimal duration. We proposed
a novel detector, GCC, which implements loopy belief propa-
gation over a factor graph to assign credibility to each sample.
This clustering is then followed by a maximum likelihood
detection. We compared the false alarm and detection rates
of the GCC to a number of benchmark detection methods in
both simulations and in a real sea environment. Our results
show that when sea noise was considered, GCC obtained a far
better trade-off between the false-alarm rate and the recall rate
than the benchmarks. This suggests that the GCC is preferable
especially for high noise with transients as appearers in a
realistic sea environment.
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